Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Genet ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017284

RESUMEN

MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel (Anethum foeniculum) is a highly esteemed spice plant with economic and medicinal benefits, making it an invaluable asset in the pharmaceutical industry. To characterize the fennel miRNAs and their Arabidopsis thaliana and Homo sapience targets with functional enrichment analysis and human disease association. A homology-based computational approach characterized the MiRnome of the Anethum foeniculum genome and assessed its impact on Arabidopsis thaliana and Homo sapience transcriptomes. In addition, functional enrichment analysis was evaluated for both species' targets. Moreover, PPI network analysis, hub gene identification, and MD simulation analysis of the top hub node with fennel miRNA were incorporated. We have identified 100 miRNAs of fennel and their target genes, which include 2536 genes in Homo sapiens and 1314 genes in Arabidopsis thaliana. Functional enrichment analysis reveals 56 Arabidopsis thaliana targets of fennel miRNAs showed involvement in metabolic pathways. Highly enriched human KEGG pathways were associated with several diseases, especially cancer. The protein-protein interaction network of human targets determined the top ten nodes; from them, seven hub nodes, namely MAPK1, PIK3R1, STAT3, EGFR, KRAS, CDC42, and SMAD4, have shown their involvement in the pancreatic cancer pathway. Based on the Blast algorithm, 21 fennel miRNAs are homologs to 16 human miRNAs were predicted; from them, the CSPP1 target was a common target for afo-miR11117a-3p and has-miR-6880-5p homologs miRNAs. Our results are the first to report the 100 fennel miRNAs, and predictions for their endogenous and human target genes provide a basis for further understanding of Anethum foeniculum miRNAs and the biological processes and diseases with which they are associated.

2.
Funct Integr Genomics ; 23(2): 149, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148427

RESUMEN

Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.


Asunto(s)
Fibrosis Quística , Holarrhena , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Holarrhena/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
3.
Funct Integr Genomics ; 23(1): 55, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725761

RESUMEN

Cross-species post-transcriptional regulatory potential of plant derived small non-coding microRNAs (miRNAs) has been well documented by plenteous studies. MicroRNAs are transferred to host cells via oral ingestion wherein they play a decisive role in regulation of host genes; thus, miRNAs have evolved as the nascent bioactive molecules imparting pharmacological values to traditionally used medicinal plants. The present study aims to investigate small RNA profiling in order to uncover the potential regulatory role of miRNAs derived from Andrographis paniculata, one of the most widely used herb by tribal communities for liver disorders and document the pharmacological properties of A. paniculata miRNAs. In this study, high-throughput sequencing method was used to generate raw data, ~ 60 million sequences were generated from A. paniculata leaves. Using computational tools and bioinformatics approach, analyses of 3,480,097 clean reads resulted in identification of 3440 known and 51 putative novel miRNAs regulating 1365 and 192 human genes respectively. Remarkably, the identified plausible novel miRNAs apa-miR-5, apa-miR-1, apa-miR-26, and apa-miR-30 are projected to target significant host genes including CDK6, IKBKB, TRAF3, CHD4, MECP2, and ADIPOQ. Subsequent annotations revealed probable involvement of the target genes in various pathways for instance p38-MAPK, AKT, AMPK, NF-Kß, ERK, WNT signalling, MYD88 dependant cascade, and pathways in cancer. Various diseases such as human papilloma virus infection, Alzheimer's, Non-alcoholic Fatty Liver, Alcoholic liver diseases, HepatoCellular Carcinoma (HCC), and numerous other cancers were predominantly found to be linked with target genes. Our findings postulate novel interpretations regarding modulation of human transcripts by A. paniculata miRNAs and exhibit the regulation of human diseases by plant-derived miRNAs. Though our study elucidates miRNAs as novel therapeutic agents, however, experimental validations for assessment of therapeutic potential of these miRNAs are still warranted.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/genética , Andrographis paniculata , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica
4.
Plant Signal Behav ; 15(1): 1699265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797719

RESUMEN

Bacopa monnieri known as 'Brahmi' is a well-known medicinal plant belonging to Scrophulariaceae family for its nootropic properties. To the best of our knowledge, no characterization data is available on the potential role of micro RNAs (miRNAs) from this plant till date. We present here the first report of computational characterizations of miRNAs from B. monnieri. Owing to the high conservation of miRNAs in nature, new and potential miRNAs can be identified in plants using in silico techniques. Using the plant miRNA sequences present in the miRBase repository, a total of 12 miRNAs were identified from B. monnieri which pertained to 11 miRNA families from the shoot and root transcriptome data. Furthermore, gene ontology analysis of the identified 68 human target genes exhibited significance in various biological processes. These human target genes were associated with signaling pathways like NF-kB and MAPK with TRAF2, CBX1, IL1B, ITGA4 and ITGB1BP1 as the top five hub nodes. This cross-kingdom study provides initial insights about the potential of miRNA-mediated cross-kingdom regulation and unravels the essential target genes of human with implications in numerous human diseases including cancer.


Asunto(s)
Bacopa/genética , Bacopa/metabolismo , MicroARNs/metabolismo , Transcriptoma/genética , Homólogo de la Proteína Chromobox 5 , Ontología de Genes , Humanos , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA