Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Anaesth ; 125(5): 826-834, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32682554

RESUMEN

BACKGROUND: We compared anaesthetists' ability to identify haemoglobin oxygen saturation (SpO2) levels using two auditory displays: one based on a standard pulse oximeter display (varying pitch plus alarm) and the other enhanced with additional sound properties (varying pitch plus tremolo and acoustic brightness) to differentiate SpO2 ranges. METHODS: In a counter-balanced crossover study in a simulator, 20 experienced anaesthetists supervised a junior colleague (an actor) managing two airway surgery scenarios: once while using the enhanced auditory display and once while using a standard auditory display. Participants were distracted with other tasks such as paperwork and workplace interruptions, but were required to identify when SpO2 transitioned between pre-set ranges (target, low, critical) and when other vital signs transitioned out of a target range. They also identified the range once a transition had occurred. Visual displays were available for all monitored vital signs, but the numerical value for SpO2 was excluded. RESULTS: Participants were more accurate and faster at detecting transitions to and from the target SpO2 range when using the enhanced display (100.0%, 3.3 s) than when using the standard display plus alarm (73.2%, 27.4 s) (P<0.001 and P=0.004, respectively). They were also more accurate at identifying the SpO2 range once a transition had occurred when using the enhanced display (100.0%) than when using the standard display plus alarm (57.1%; P<0.001). CONCLUSIONS: The enhanced auditory display helps anaesthetists judge SpO2 levels more effectively than current auditory displays and may facilitate 'eyes-free' monitoring.


Asunto(s)
Presentación de Datos , Oximetría/instrumentación , Estimulación Acústica , Adulto , Anestesiólogos , Alarmas Clínicas , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Quirófanos/organización & administración , Oxígeno/sangre , Encuestas y Cuestionarios , Signos Vitales
2.
Anesth Analg ; 129(4): 997-1004, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31283622

RESUMEN

BACKGROUND: When engaged in visually demanding tasks, anesthesiologists depend on the auditory display of the pulse oximeter (PO) to provide information about patients' oxygen saturation (SpO2). Current auditory displays are not always effective at providing SpO2 information. In this laboratory study, clinician and nonclinician participants identified SpO2 parameters using either a standard auditory display or an auditory display enhanced with additional acoustic properties while performing distractor tasks and in the presence of background noise. METHODS: In a counterbalanced crossover design, specialist or trainee anesthesiologists (n = 25) and nonclinician participants (n = 28) identified SpO2 parameters using standard and enhanced PO auditory displays. Participants performed 2 distractor tasks: (1) arithmetic verification and (2) keyword detection. Simulated background operating room noise played throughout the experiment. Primary outcomes were accuracies to (1) detect transitions to and from an SpO2 target range and (2) identify SpO2 range (target, low, or critical). Secondary outcomes included participants' latency to detect target transitions, accuracy to identify absolute SpO2 values, accuracy and latency of distractor tasks, and subjective judgments about tasks. RESULTS: Participants were more accurate at detecting target transitions using the enhanced display (87%) than the standard display (57%; odds ratio, 7.3 [95% confidence interval {CI}, 4.4-12.3]; P < .001). Participants were also more accurate at identifying SpO2 range using the enhanced display (86%) than the standard display (76%; odds ratio, 2.7 [95% CI, 1.6-4.6]; P < .001). Secondary outcome analyses indicated that there were no differences in performance between clinicians and nonclinicians for target transition detection accuracy and latency, SpO2 range identification accuracy, or absolute SpO2 value identification. CONCLUSIONS: The enhanced auditory display supports more accurate detection of target transitions and identification of SpO2 range for both clinicians and nonclinicians. Despite their previous experience using PO auditory displays, clinicians in this laboratory study were no more accurate in any SpO2 outcomes than nonclinician participants.


Asunto(s)
Acústica/instrumentación , Anestesiólogos/psicología , Percepción Auditiva , Alarmas Clínicas , Oximetría/instrumentación , Oxígeno/sangre , Estimulación Acústica , Adulto , Atención , Biomarcadores/sangre , Competencia Clínica , Estudios Cruzados , Femenino , Humanos , Masculino , Ruido/efectos adversos , Enmascaramiento Perceptual , Detección de Señal Psicológica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA