Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 96: 598-609, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27671970

RESUMEN

Predicting oral bioavailability (Foral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large-scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large-scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40-4.58), human blood-to-plasma ratio of 0.62 (0.57-0.71), and fraction unbound in plasma of 0.05 (0.01-0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9L/h (interquartile range: 11.6-43.6L/h; n=23), volume of distribution was 80.8L (54.5-239L; n=23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203-0.724; n=22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.


Asunto(s)
Biofarmacia/métodos , Bases de Datos Factuales , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Administración Oral , Evaluación Preclínica de Medicamentos/métodos , Predicción , Humanos , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Preparaciones Farmacéuticas/administración & dosificación
2.
Eur J Pharm Sci ; 96: 626-642, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27693299

RESUMEN

Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp® Simulator, and GastroPlus™) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded "bottom-up" anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (Foral) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. Foral was also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. Foral was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water-soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug-specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data "as is" in this blinded bottom-up prediction approach.


Asunto(s)
Biofarmacia/métodos , Simulación por Computador , Modelos Biológicos , Preparaciones Farmacéuticas/clasificación , Preparaciones Farmacéuticas/metabolismo , Administración Oral , Evaluación Preclínica de Medicamentos/métodos , Predicción , Humanos , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Preparaciones Farmacéuticas/administración & dosificación
3.
Eur J Pharm Sci ; 96: 610-625, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816631

RESUMEN

Orally administered drugs are subject to a number of barriers impacting bioavailability (Foral), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp®, and GastroPlus™) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters. Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exercise may not be representative of prospective modelling in industry, as API information was limited to sparse details. 43 active pharmaceutical ingredients (APIs) from the OrBiTo database were selected for the exercise. Over 4000 simulation output files were generated, representing over 2550 study arm-institution-software combinations and approximately 600 human clinical study arms simulated with overlap. 84% of the simulated study arms represented administration of immediate release formulations, 11% prolonged or delayed release, and 5% intravenous (i.v.). Higher percentages of i.v. predicted area under the curve (AUC) were within two-fold of observed (52.9%) compared to per oral (p.o.) (37.2%), however, Foral and relative AUC (Frel) between p.o. formulations and solutions were generally well predicted (64.7% and 75.0%). Predictive performance declined progressing from i.v. to solution and immediate release tablet, indicating the compounding error with each layer of complexity. Overall performance was comparable to previous large-scale evaluations. A general overprediction of AUC was observed with average fold error (AFE) of 1.56 over all simulations. AFE ranged from 0.0361 to 64.0 across the 43 APIs, with 25 showing overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7-fold differences in AFE between SimCYP and GI-Sim, however average performance was relatively consistent across the three software platforms.


Asunto(s)
Biofarmacia/métodos , Simulación por Computador , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Administración Oral , Evaluación Preclínica de Medicamentos/métodos , Predicción , Humanos , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Preparaciones Farmacéuticas/administración & dosificación
4.
Arzneimittelforschung ; 61(1): 23-31, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21355443

RESUMEN

The need for a reliable bioanalytical method is of primary importance during preclinical studies. The aim of the present study was simultaneous determination of pioglitazone (CAS 111025-46-8) (PIO) and glimepiride (CAS 93479-97-1) (GLM) in plasma of rats. A high-performance liquid chromatographic method has been developed and validated using C18 column and UV detector. A mobile phase composed of acetonitrile and ammonium acetate buffer pH 4.5 in the ratio of 55:45%. The plasma samples clean-up was carried out using solid phase cartridges. The method was in the linear range of 50-8000 ng/mL for PIO and 50-2000 ng/mL for GLM. The coefficient of regression was found to be > or = 0.99. Precision and accuracy were within the acceptable limits, as indicated by relative standard deviation varying from 1.5 to 6.1% for PIO and 3.1 to 7.0% for GLM whereas the accuracy ranged from 97.0 to 106.4% for PIO and 96.5 to 106.4% for GLM. The mean extraction recovery was found to be 90.2 +/- 4.5, 76.8 +/- 2.8 and 85.2 +/- 5.2% for PIO, GLM and internal standard, respectively. Moreover, PIO and GLM were stable in plasma, up to 30 days of storage at -70 degrees C and after being subjected to bench top, auto-sampler, and three freeze-thaw cycles. The developed method was applied for preclinical pharmacokinetic studies.


Asunto(s)
Hipoglucemiantes/sangre , Hipoglucemiantes/farmacocinética , Compuestos de Sulfonilurea/sangre , Compuestos de Sulfonilurea/farmacocinética , Tiazolidinedionas/sangre , Tiazolidinedionas/farmacocinética , Animales , Área Bajo la Curva , Calibración , Cromatografía Líquida de Alta Presión , Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , Semivida , Masculino , Pioglitazona , Ratas , Ratas Wistar , Estándares de Referencia , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA