Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 16(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257125

RESUMEN

The neurotoxic effects of ozone exposure are related to neuroinflammation and increases in reactive oxygen species (ROS). This study aimed to assess inflammation, Brain-Derived Neurotrophic Factor (BDNF), and cognition in healthy male cyclists following polyphenol supplementation and exercise in an ozone-polluted environment. Ten male cyclists initially completed a maximal incremental test and maximal effort 4 km time trial in ambient air. Cyclists then completed two trials in an ozone-polluted environment (0.25 ppm) following 7 days of supplementation with either polyphenol (POLY) or placebo (PL). Experimental trials consisted of a three-stage submaximal test followed by a 4 km time trial. Blood samples were drawn pre- and post-exercise, and analyzed for BDNF, interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor (TNF-α). The Stroop test and serial subtraction task were performed before ozone exposure and again after the 4 km TT. Serum BDNF increased post-exercise (p < 0.0001), and positive differences were observed post-exercise in the ozone POLY group relative to PL (p = 0.013). Plasma IL-6 increased post-exercise (p = 0.0015), and TNF-α increased post-ozone exposure (p = 0.0018). There were no differences in Stroop or serial subtraction tasks pre- or post-exercise. Exercise increases BDNF in ozone.


Asunto(s)
Citocinas , Ozono , Masculino , Humanos , Interleucina-6 , Factor de Necrosis Tumoral alfa , Factor Neurotrófico Derivado del Encéfalo , Cognición , Anticuerpos , Polifenoles/farmacología , Suplementos Dietéticos
2.
Eur J Appl Physiol ; 124(1): 343-352, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37517068

RESUMEN

PURPOSE: Polluted environments can adversely affect lung function and exercise performance. Evidence suggests that some nutrient supplements may offset pollution's detrimental effects. This study examined the effect of polyphenol supplementation on lung function and exercise performance in an ozone-polluted environment. METHODS: Ten male cyclists (mean ± SD: age, 43.8 ± 12.4 years; height, 177.8 ± 7.1 cm; weight, 76.03 ± 7.88 kg; VO2max 4.12 ± 0.72 L min-1) initially completed a baseline maximal incremental test and maximal effort 4 km time trial in ambient air. Thereafter cyclists completed two trials in an ozone-polluted environment (0.25 ppm) following seven days of supplementation with either polyphenol (PB) or placebo (PL). Experimental trials consisted of a three-stage submaximal test (50%, 60% and 70% incremental peak power) followed by a 4 km time trial. Lung function was measured pre- and post-exercise via spirometry and adverse respiratory symptoms with a Likert scale. RESULTS: Ozone exposure significantly reduced (p < 0.05) lung function relative to ambient air. There were no significant differences (p > 0.05) in measured variables across the three submaximal intensities. There was a small (d = 0.31) non-significant difference (p = 0.09) in 4 km performance in PB (406.43 ± 50.29 s) vs. PL (426.20 ± 75.06 s). Oxygen consumption during the time trial was greater in PB (3.49 ± 0.71 L min-1) vs PL (3.32 ± 0.71 L min-1, p = 0.01, d = 0.24). Cough severity (SOC) was lower (p = 0.03) with PB relative to PL. CONCLUSION: PB supplementation may provide small benefits to performance and reduce cough symptoms during high-intensity exercise in ozone-polluted environments.


Asunto(s)
Rendimiento Atlético , Ozono , Adulto , Humanos , Masculino , Persona de Mediana Edad , Ciclismo , Tos/inducido químicamente , Suplementos Dietéticos , Pulmón , Consumo de Oxígeno , Ozono/efectos adversos , Polvos
3.
Int J Sport Nutr Exerc Metab ; 32(6): 462-467, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981712

RESUMEN

Blackcurrant juices and extracts containing anthocyanin may provide ergogenic benefits to sports performance. However, there are no studies examining the effects of coingestion of blackcurrant and caffeine. This investigation examined the effects of acute supplementation with a proprietary blackcurrant beverage administered in isolation or in combination with caffeine on repeated high-intensity cycling. Twelve well-trained male cyclists (mean ± SD: age, 39.5 ± 11.4 years; height, 177.9 ± 5.7 cm; weight, 78.2 ± 8.9 kg; and peak oxygen consumption, 4.71 ± 0.61 L/min) completed experimental sessions consisting of repeated (8 × 5 min) maximal intensity efforts. Four experimental treatments were administered in a double-blind, balanced Latin square design: blackcurrant + caffeine, blackcurrant + placebo, caffeine + placebo and placebo + placebo. Differences in power output, heart rate, oxygen consumption, muscle oxygen saturation, rate of perceived exertion, and cognitive function (Stroop) were compared between treatments using two-way repeated-measures analysis of variance and effect size analysis. There were no significant differences (p > .05) in either physiological or cognitive variables with any supplement treatment (blackcurrant + caffeine, blackcurrant + placebo, and caffeine + placebo) relative to placebo + placebo. Moreover, any observed differences were deemed trivial (d < 0.2) in magnitude. However, power output was lower (p < .05) in blackcurrant + placebo compared with blackcurrant + caffeine. A blackcurrant extract beverage administered in isolation or combination with caffeine provided no beneficial effect on cycling performance or physiological measures relative to a placebo control.


Asunto(s)
Rendimiento Atlético , Ribes , Masculino , Humanos , Adulto , Persona de Mediana Edad , Cafeína , Antocianinas/farmacología , Ciclismo/fisiología , Rendimiento Atlético/fisiología , Método Doble Ciego , Extractos Vegetales/farmacología , Estudios Cruzados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA