Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 105(11): 8824-8838, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175230

RESUMEN

Acetate supplementation has been shown to increase milk fat yield in diets with low risk of biohydrogenation-induced milk fat depression. The interaction of acetate supplementation with specific dietary factors that modify rumen fermentation and short-chain fatty acid (FA) synthesis has not been investigated. The objective of this experiment was to determine the effect of acetate supplemented as sodium acetate at 2 dietary fiber levels. Our hypothesis was that acetate would increase milk fat production more in animals fed the low-fiber diet. Twelve lactating multiparous Holstein cows were arranged in a 4 × 4 Latin square design balanced for carryover effects with a 2 × 2 factorial arrangement of dietary fiber level and acetate supplementation with 21-d experimental periods. The high-fiber diet had 32% neutral detergent fiber and 21.8% starch, and the low-fiber diet had 29.5% neutral detergent fiber and 28.7% starch created by substitution of forages predominantly for ground corn grain. Acetate was supplemented in the diet at an average 2.8% of dry matter (DM) to provide approximately 10 mol/d of acetate as anhydrous sodium acetate. Acetate supplementation increased DM intake by 6%, with no effect on meal frequency or size. Furthermore, acetate supplementation slightly increased total-tract apparent DM digestibility and tended to increase organic matter digestibility. Acetate supplementation increased milk fat concentration and yield by 8.6 and 10.5%, respectively, but there was no interaction with dietary fiber. The increase in milk fat synthesis was associated with 46 and 85 g/d increases in the yield of de novo (<16C) and mixed source (16C) FA, respectively, with no changes in yield of preformed FA (>16C). There was a 9% increase in the concentration of milk mixed-source FA and a 7% decrease in milk preformed FA with acetate supplementation, regardless of dietary fiber level. Acetate supplementation also increased the concentrations of plasma acetate and ß-hydroxybutyrate, major metabolic substrates for mammary lipogenesis. Overall, acetate supplementation increased milk fat yield regardless of dietary fiber level through an increase mostly caused by an increase in longer-chain de novo FA, suggesting stimulation of mammary lipogenesis. The heightened mammary de novo lipogenesis was supported by an increase in the concentration of metabolic substrates in plasma.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia/fisiología , Acetato de Sodio/farmacología , Alimentación Animal/análisis , Ácido 3-Hidroxibutírico/metabolismo , Detergentes/metabolismo , Digestión , Fibras de la Dieta/metabolismo , Rumen/metabolismo , Dieta/veterinaria , Conducta Alimentaria , Suplementos Dietéticos , Almidón/metabolismo
2.
J Dairy Sci ; 105(9): 7446-7461, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931483

RESUMEN

Biohydrogenation-induced milk fat depression (MFD) is a reduction in milk fat synthesis caused by bioactive fatty acids (FA) produced during altered ruminal microbial metabolism of unsaturated FA. The methionine analog 2-hydroxy-4-(methylthio)butanoate (HMTBa) has been shown to reduce the shift to the alternate biohydrogenation pathway and maintain higher milk fat yield in high-producing cows fed diets lower in fiber and higher in unsaturated FA. The objective of this experiment was to verify the effect of HMTBa on biohydrogenation-induced MFD and investigate associated changes in rumen environment and fermentation. Twenty-two rumen cannulated high-producing Holstein cows [168 ± 66 d in milk; 42 ± 7 kg of milk/d (mean ± standard deviation)] were used in a randomized design performed in 2 blocks (1 = 14 cows, 2 = 8 cows). Treatments were control (corn carrier) and HMTBa (0.1% of diet dry matter). The experiment included a 7-d covariate period followed by 3 phases that fed diets with increasing risk of MFD. The diet during the covariate and low-risk phase (7 d) was 32% neutral detergent fiber with no additional oil. The diet during the moderate-risk phase (17 d) was 29% neutral detergent fiber with 0.75% soybean oil. Soybean oil was increased to 1.5% for the last 4 d. The statistical model included the random effect of block and time course data were analyzed with repeated measures including the random effect of cow and tested the interaction of treatment and time. There was no effect of block or interaction of block and treatment or time. There was no overall effect of treatment or treatment by time interaction for dry matter intake, milk yield, and milk protein concentration and yield. Overall, HMTBa increased milk fat percent (3.2 vs. 3.6%) and yield (1,342 vs. 1,543 g/d) and there was no interaction of treatment and dietary phase. Additionally, HMTBa decreased the concentration of trans-10 18:1 in milk fat and rumen digesta. Average total ruminal concentration of volatile FA across the day and total-tract dry matter and fiber digestibility were not affected by HMTBa, but HMTBa increased average rumen butyrate and decreased propionate concentration and increased total protozoa abundance. Additionally, HMTBa increased the fractional rate of α-linoleic acid clearance from the rumen following a bolus predominantly driven by a difference in the first 30 min. Plasma insulin was decreased by HMTBa. In conclusion, HMTBa prevented the increase in trans FA in milk fat associated with MFD through a mechanism that is independent of total volatile FA concentration, but involves modification of rumen biohydrogenation. Decreased propionate and increased butyrate and ruminal protozoa may also have functional roles in the mechanism.


Asunto(s)
Lactancia , Metionina , Leche , Rumen , Alimentación Animal/análisis , Animales , Butiratos/metabolismo , Bovinos , Detergentes/metabolismo , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Metionina/análogos & derivados , Propionatos/metabolismo , Rumen/metabolismo , Rumen/parasitología , Aceite de Soja/metabolismo
3.
J Dairy Sci ; 104(7): 7572-7582, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33814140

RESUMEN

Supplementation with sodium acetate (NaAcet) increases milk fat production through an apparent stimulation of de novo lipogenesis in the mammary gland. Sodium acetate increases acetate supply to the mammary gland, but it also increases dietary cation-anion difference, which can also increase milk fat yield. The objective of this study was to determine if the effect of NaAcet on milk fat production was due to an increase in acetate supply or an increase in dietary cation-anion difference. The study included 12 multiparous cows in a replicated 3 × 3 Latin square design balanced for carryover effects, with 14-d experimental periods. Treatments were a basal total mixed ration (31.8% neutral detergent fiber, 14.8% crude protein, 25.5% starch, and 4.4% fatty acids on a dry matter basis) as a no-supplement control, acetate supplemented at 3.25% of dry matter as NaAcet, and sodium bicarbonate (NaHCO3) providing an equal amount of sodium to the NaAcet treatment. The NaAcet and NaHCO3 were mixed into the basal diet before feeding. Milk samples were taken at each milking during the last 3 d of each period. Plasma samples were taken every 9 h during the last 3 d (a total of 8 times) to determine concentrations of plasma metabolites and hormones. Eating behavior was monitored during the last week of each period using an automated system. The NaAcet and NaHCO3 treatments increased milk fat concentration and yield compared to the no-supplement control. The NaAcet treatment increased milk fat production predominantly by increasing the yield of de novo and mixed-source fatty acids. The NaHCO3 treatment increased the yield of preformed and de novo fatty acids, suggesting different mechanisms for the 2 treatments. The NaAcet treatment increased plasma acetate concentration in a period of the day concurrent with the highest dry matter intake. The NaAcet treatment increased milk fat production by stimulating the production of de novo fatty acids, a mechanism consistent with previous reports, possibly by increasing acetate supply to the mammary gland. The NaHCO3 treatment increased milk fat production by increasing the production of all biological categories of fatty acids, except for odd and branched-chain fatty acids, possibly by increasing overall diet digestibility.


Asunto(s)
Alimentación Animal , Leche , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Ácidos Grasos , Femenino , Lactancia , Rumen , Acetato de Sodio , Bicarbonato de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA