RESUMEN
This study aims to investigate the effects of melatonin on follicular growth, viability and ultrastructure, as well as on the levels of mRNA for antioxidant enzymes, reactive oxygen species (ROS) and meiotic progression in oocytes from in vitro cultured bovine early antral follicles. To this end, isolated early antral follicles (500-600 µm) were cultured in TCM-199+ alone or supplemented with 10-6 , 10-7 or 10-8 M melatonin at 38.5°C with 5% CO2 for 8 days. Follicle diameters were evaluated at days 0, 4 and 8 of culture. At the end of culture, ultrastructure, chromatin configuration, viability (calcein-AM and ethidium homodimer-1 staining), and the levels of ROS and mRNA for catalase (CAT), superoxide dismutase (SOD) and peroxiredoxin 6 (PRDX6) and glutathione peroxidase (GPx) were investigated in oocyte-granulosa cell complexes (OGCs). The results showed that early antral follicles cultured with 10-6 and 10-8 M melatonin had a progressive and significant increase in their diameters throughout the culture period (p < .05). Additionally, oocytes from follicles cultured with 10-7 or 10-8 M melatonin had increased fluorescence for calcein-AM, while those cultured with 10-6 or 10-7 M had reduced fluorescence for ethidium homodimer-1. Different from follicles cultured in other treatments, those cultured with 10-8 M melatonin had well-preserved ultrastructure of oocyte and granulosa cells. Melatonin, however, did not influence the levels of ROS, the mitochondrial activity, oocyte meiotic resumption and expression mRNA for SOD, CAT, GPX1 and PRDX6. In conclusion, the presence of 10-8 M melatonin in culture medium improves viability and preserves the ultrastructure of oocyte and granulosa cells of early antral follicles cultured in vitro.
Asunto(s)
Fluoresceínas , Melatonina , Femenino , Animales , Bovinos , Melatonina/farmacología , Melatonina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Superóxido Dismutasa , ARN Mensajero/metabolismoRESUMEN
This study evaluated the potential of Cimicifuga racemosa (L.) Nutt extract (CIMI) to reduce the deleterious effects of doxorubicin (DOXO) in oocytes, follicles and stromal cells in mice ovaries cultured in vitro. In experiment 1, mice ovaries were cultured in DMEM+ alone or supplemented with 5, 50 or 500 ng/mL CIMI, while in experiment 2, mice ovaries were cultured in DMEM+ alone or supplemented with 5 ng/mL CIMI (better concentration), 0.3 µg/mL DOXO or both. Thereafter, the ovaries were processed for histological (morphology, growth, activation, extracellular matrix configuration and stromal cell density), immunohistochemical (caspase-3) analyses. Follicle viability was evaluated by fluorescence microscopy (ethidium homodimer-1 and calcein) while real-time PCR was performed to analyses the levels of (mRNA for SOD, CAT and nuclear factor erythroid 2-related factor 2 (NRF2) analyses. The results showed that DOXO reduces the percentage of normal follicles and the density of stromal cells in cultured ovaries, but these harmful effects were blocked by CIMI. The DOXO reduced the percentage of primordial follicles, while the presence of CIMI alone did not influence percentage of primordial follicles. A higher staining for caspase-3 was seen in ovaries cultured in control medium alone or with DOXO when compared with those cultured with CIMI alone or both CIMI and DOXO. In addition, follicles from ovaries cultured with both CIMI and DOXO were stained by calcein, while those follicles cultured with only DOXO were stained with ethidium homodimer-1. Furthermore, ovaries cultured with CIMI or both CIMI and DOXO had higher levels of mRNA for SOD and CAT, respectively, than those cultured with only DOXO. In conclusion, the extract of CIMI protects the ovaries against deleterious effects of DOXO on follicular survival and ovarian stromal cells.
RESUMEN
This study aims to investigate the effect of melatonin on activation, growth and morphology of bovine primordial follicles, as well as on stromal cells density in ovarian tissues after in vitro culture. Ovarian fragments were cultured in α-MEM+ alone or supplemented with melatonin (250, 500, 1,000 or 2,000 pM) for a period of six days. Non-cultured and cultured tissues were processed for histological analysis; according to developmental stages, follicles were classified as primordial or growing follicles. These follicles were further classified as morphologically normal or degenerated. Ovarian stromal cell density was also evaluated. The percentages of primordial and developing follicles, as well as those classified of normal follicles, were compared by Fisher's exact test, and the differences were considered significant when p < .05. The results showed that the presence of 1,000 and 2,000 pM melatonin in culture medium promoted a reduction in the percentage of primordial follicles and an increase in the percentage of development follicles, when compared to follicles cultured in control medium. On the other hand, the presence of 250 or 500 pM melatonin did not show a significant effect on the percentage of primordial and developing follicles. Besides that, the presence of 500, 1,000 and 2,000 pM melatonin maintained the percentage of normal follicles similar to those seen uncultured control. Moreover, tissues cultured in presence of 1,000 pM melatonin showed a higher percentage of normal follicles when compared to follicles cultured in the presence of 250 pM melatonin. It was observed a similar profile of stromal density in both uncultured tissues and those cultured in vitro in the presence of melatonin. In conclusion, melatonin (1,000 and 2,000 pM) promotes bovine primordial follicles activation and maintains the stromal cell density during in vitro culture of ovarian cortical tissue.