Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
PLoS One ; 11(7): e0159819, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27454873

RESUMEN

Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.


Asunto(s)
Aloe/química , Aloe/metabolismo , Fructanos/química , Fructanos/metabolismo , Estrés Fisiológico , Agua , Carbohidratos/química , Cromatografía de Gases y Espectrometría de Masas , Estructura Molecular , Extractos Vegetales/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Nat Commun ; 7: 12119, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27381418

RESUMEN

Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Aparato de Golgi/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Arabidopsis/clasificación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/química , Pared Celular/metabolismo , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucanos/biosíntesis , Aparato de Golgi/química , Proteínas de Transporte de Monosacáridos/metabolismo , Pectinas/biosíntesis , Filogenia , Células Vegetales/química , Células Vegetales/metabolismo , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xilanos/biosíntesis
4.
BMC Plant Biol ; 16: 90, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27091363

RESUMEN

BACKGROUND: Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. RESULTS: T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wild type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. CONCLUSIONS: Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Pectinas/biosíntesis , Polen/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fertilidad/genética , Galactanos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genotipo , Glicosiltransferasas/genética , Aparato de Golgi/metabolismo , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo
5.
Plant Cell ; 28(2): 537-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26813622

RESUMEN

Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-D-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-D-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Pectinas/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Transducción de Señal , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Botrytis/fisiología , Pared Celular/metabolismo , Ácidos Hexurónicos/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Pseudomonas syringae/fisiología
6.
Plant Signal Behav ; 10(9): e1055434, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26237162

RESUMEN

Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses.


Asunto(s)
Esterasas/metabolismo , Genómica , Acetatos/metabolismo , Arabidopsis/enzimología , Pectinas/metabolismo , Filogenia , Especificidad de la Especie
7.
Plant Physiol ; 167(3): 711-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25583925

RESUMEN

Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Celulosa/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/metabolismo , Semillas/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Birrefringencia , Cationes , Diferenciación Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Quelantes/farmacología , Cristalización , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de la Membrana/genética , Mutación , Especificidad de Órganos/efectos de los fármacos , Pectinas/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Mucílago de Planta/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/ultraestructura , Solubilidad
8.
Planta ; 240(5): 1123-38, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25115560

RESUMEN

MAIN CONCLUSION: PAE8 and PAE9 have pectin acetylesterase activity and together remove one-third of the cell wall acetate associated with pectin formation in Arabidopsis leaves. In pae8 and pae9 mutants, substantial amounts of acetate accumulate in cell walls. In addition, the inflorescence stem height is decreased. Pectic polysaccharides constitute a significant part of the primary cell walls in dicotyledonous angiosperms. This diverse group of polysaccharides has been implicated in several physiological processes including cell-to-cell adhesion and pathogenesis. Several pectic polysaccharides contain acetyl-moieties directly affecting their physical properties such as gelling capacity, an important trait for the food industry. In order to gain further insight into the biological role of pectin acetylation, a reverse genetics approach was used to investigate the function of genes that are members of the Pectin AcetylEsterase gene family (PAE) in Arabidopsis. Mutations in two members of the PAE family (PAE8 and PAE9) lead to cell walls with an approximately 20 % increase in acetate content. High-molecular-weight fractions enriched in pectic rhamnogalacturonan I (RGI) extracted from the mutants had increased acetate content. In addition, the pae8 mutant displayed increased acetate content also in low-molecular-weight pectic fractions. The pae8/pae9-2 double mutant exhibited an additive effect by increasing wall acetate content by up to 37 %, suggesting that the two genes are not redundant and act on acetyl-substituents of different pectic domains. The pae8 and pae8/pae9-2 mutants exhibit reduced inflorescence growth underscoring the role of pectic acetylation in plant development. When heterologously expressed and purified, both gene products were shown to release acetate from the corresponding mutant pectic fractions in vitro. PAEs play a significant role in modulating the acetylation state of pectic polymers in the wall, highlighting the importance of apoplastic metabolism for the plant cell and plant growth.


Asunto(s)
Acetilesterasa/genética , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Eliminación de Gen , Mutación , Acetatos/metabolismo , Acetilación , Acetilesterasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Western Blotting , Hidrolasas de Éster Carboxílico/clasificación , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Hexurónicos/metabolismo , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Monosacáridos/metabolismo , Pectinas/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ramnosa/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(31): 11563-8, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25053812

RESUMEN

Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.


Asunto(s)
Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Familia de Multigenes , Ramnosa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Arabidopsis/enzimología , Transporte Biológico , Cinética , Datos de Secuencia Molecular , Pectinas/metabolismo , Filogenia , Proteolípidos/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Tiempo
10.
Planta ; 238(4): 627-42, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23801299

RESUMEN

One major component of plant cell walls is a diverse group of polysaccharides, the hemicelluloses. Hemicelluloses constitute roughly one-third of the wall biomass and encompass the heteromannans, xyloglucan, heteroxylans, and mixed-linkage glucan. The fine structure of these polysaccharides, particularly their substitution, varies depending on the plant species and tissue type. The hemicelluloses are used in numerous industrial applications such as food additives as well as in medicinal applications. Their abundance in lignocellulosic feedstocks should not be overlooked, if the utilization of this renewable resource for fuels and other commodity chemicals becomes a reality. Fortunately, our understanding of the biosynthesis of the various hemicelluloses in the plant has increased enormously in recent years mainly through genetic approaches. Taking advantage of this knowledge has led to plant mutants with altered hemicellulosic structures demonstrating the importance of the hemicelluloses in plant growth and development. However, while we are on a solid trajectory in identifying all necessary genes/proteins involved in hemicellulose biosynthesis, future research is required to combine these single components and assemble them to gain a holistic mechanistic understanding of the biosynthesis of this important class of plant cell wall polysaccharides.


Asunto(s)
Pared Celular/metabolismo , Glucanos/biosíntesis , Mananos/biosíntesis , Células Vegetales/metabolismo , Polisacáridos/biosíntesis , Xilanos/biosíntesis
11.
Mol Plant ; 5(5): 984-92, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22474179

RESUMEN

A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis. cDNA sequences were generated from developing nasturtium (Tropaeolum majus) seeds, which produce large amounts of non-fucosylated xyloglucan as a seed storage polymer. In addition to known xyloglucan biosynthetic genes, a previously uncharacterized putative xyloglucan galactosyltransferase was identified. Analysis of an Arabidopsis thaliana mutant line defective in the corresponding ortholog (AT5G62220) revealed that this gene shows no redundancy with the previously characterized xyloglucan galactosyltransferase, MUR3, but is required for galactosyl-substitution of xyloglucan at a different position. The gene was termed XLT2 for Xyloglucan L-side chain galactosylTransferase position 2. It represents an enzyme in the same subclade of glycosyltransferase family 47 as MUR3. A double mutant defective in both MUR3 (mur3.1) and XLT2 led to an Arabidopsis plant with xyloglucan that consists essentially of only xylosylated glucosyl units, with no further substitutions.


Asunto(s)
Galactosiltransferasas/metabolismo , Glucanos/biosíntesis , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Tropaeolum/enzimología , Tropaeolum/genética , Xilanos/biosíntesis , Galactosiltransferasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Proteínas de Plantas/genética , ARN de Planta/genética , Semillas/enzimología , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ARN , Tropaeolum/crecimiento & desarrollo , Tropaeolum/metabolismo
12.
Plant J ; 68(6): 1014-27, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21851431

RESUMEN

Transcriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus and Tropaeolum majus, which differ in their storage tissue for oil, their ability to photosynthesize and in the structure and content of their triacylglycerols (TAG). The larger number of ESTs in these 16 datasets provided reliable estimates of the expression of acyltransferases and other enzymes expressed at low levels. Analysis of EST levels from these oilseeds revealed both conserved and distinct species-specific expression patterns for genes involved in the synthesis of glycerolipids and their precursors. Independent of the species and tissue type, ESTs for core fatty acid synthesis enzymes maintained a conserved stoichiometry and a strong correlation in temporal profiles throughout seed development. However, ESTs associated with non-plastid enzymes of oil biosynthesis displayed dissimilar temporal patterns indicative of different regulation. The EST levels for several genes potentially involved in accumulation of unusual TAG structures were distinct. Comparison of expression of members from multi-gene families allowed the identification of specific isoforms with conserved function in oil biosynthesis. In all four oilseeds, ESTs for Rubisco were present, suggesting its possible role in carbon metabolism, irrespective of light availability. Together, these data provide a resource for use in comparative and functional genomics of diverse oilseeds. Expression data for more than 350 genes encoding enzymes and proteins involved in lipid metabolism are available at the 'ARALIP' website (http://aralip.plantbiology.msu.edu/).


Asunto(s)
Etiquetas de Secuencia Expresada , Ácidos Grasos/biosíntesis , Perfilación de la Expresión Génica , Genes de Plantas , Aceites de Plantas/metabolismo , Semillas/genética , Triglicéridos/biosíntesis , Acilación , Aciltransferasas/metabolismo , Brassica napus/genética , Euonymus/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Glucólisis , Ácido Pirúvico/metabolismo , Ricinus/genética , Semillas/enzimología , Semillas/crecimiento & desarrollo , Tropaeolum/genética
13.
Plant Physiol ; 155(3): 1068-78, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21212300

RESUMEN

Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/microbiología , Botrytis/fisiología , Pared Celular/metabolismo , Inmunidad Innata/inmunología , Mutación/genética , Enfermedades de las Plantas/inmunología , Acetilación , Adaptación Fisiológica , Alelos , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , ADN Bacteriano/genética , Epítopos/inmunología , Proteínas Fúngicas/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Mutagénesis Insercional/genética , Proteínas Mutantes/aislamiento & purificación , Pectinas/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Xilanos/metabolismo
14.
Mol Plant ; 2(5): 990-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19825674

RESUMEN

Plant cell walls, like a multitude of other biological materials, are natural fiber-reinforced composite materials. Their mechanical properties are highly dependent on the interplay of the stiff fibrous phase and the soft matrix phase and on the matrix deformation itself. Using specific Arabidopsis thaliana mutants, we studied the mechanical role of the matrix assembly in primary cell walls of hypocotyls with altered xyloglucan and pectin composition. Standard microtensile tests and cyclic loading protocols were performed on mur1 hypocotyls with affected RGII borate diester cross-links and a hindered xyloglucan fucosylation as well as qua2 exhibiting 50% less homogalacturonan in comparison to wild-type. As a control, wild-type plants (Col-0) and mur2 exhibiting a specific xyloglucan fucosylation and no differences in the pectin network were utilized. In the standard tensile tests, the ultimate stress levels (approximately tensile strength) of the hypocotyls of the mutants with pectin alterations (mur1, qua2) were rather unaffected, whereas their tensile stiffness was noticeably reduced in comparison to Col-0. The cyclic loading tests indicated a stiffening of all hypocotyls after the first cycle and a plastic deformation during the first straining, the degree of which, however, was much higher for mur1 and qua2 hypocotyls. Based on the mechanical data and current cell wall models, it is assumed that folded xyloglucan chains between cellulose fibrils may tend to unfold during straining of the hypocotyls. This response is probably hindered by geometrical constraints due to pectin rigidity.


Asunto(s)
Arabidopsis/metabolismo , Glucanos/metabolismo , Hipocótilo/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Pared Celular/metabolismo , Pared Celular/fisiología , Celulosa/metabolismo , Hipocótilo/genética , Modelos Teóricos , Pectinas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Resistencia a la Tracción/fisiología
15.
Plant J ; 60(6): 1055-69, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19765235

RESUMEN

Cellulose synthase-like (CSL) proteins of glycosyltransferase family 2 (GT2) are believed to be involved in the biosynthesis of cell-wall polymers. The CSL D sub-family (CSLD) is common to all plants, but the functions of CSLDs remain to be elucidated. We report here an in-depth characterization of a narrow leaf and dwarf1 (nd1) rice mutant that shows significant reduction in plant growth due to retarded cell division. Map-based cloning revealed that ND1 encodes OsCSLD4, one of five members of the CSLD sub-family in rice. OsCSLD4 is mainly expressed in tissues undergoing rapid growth. Expression of OsCSLD4 fluorescently tagged at the C- or N-terminus in rice protoplast cells or Nicotiana benthamiana leaves showed that the protein is located in the endoplasmic reticulum or Golgi vesicles. Golgi localization was verified using phenotype-rescued transgenic plants expressing OsCSLD4-GUS under the control of its own promoter. Two phenotype-altered tissues, culms and root tips, were used to investigate the specific wall defects. Immunological studies and monosaccharide compositional and glycosyl linkage analyses explored several wall compositional effects caused by disruption of OsCSLD4, including alterations in the structure of arabinoxylan and the content of cellulose and homogalacturonan, which are distinct in the monocot grass species Oryza sativa (rice). The inconsistent alterations in the two tissues and the observable structural defects in primary walls indicate that OsCSLD4 plays important roles in cell-wall formation and plant growth.


Asunto(s)
Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosiltransferasas/genética , Aparato de Golgi/metabolismo , Datos de Secuencia Molecular , Oryza/enzimología , Pectinas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Alineación de Secuencia , Análisis de Secuencia de ADN , Xilanos/metabolismo
16.
Plant Cell ; 20(5): 1289-302, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18460606

RESUMEN

Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGA to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácidos Hexurónicos/metabolismo , Pentosiltransferasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , ADN Bacteriano/genética , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Pectinas/metabolismo , Pentosiltransferasa/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nicotiana/genética , Nicotiana/metabolismo , Xilosa/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
17.
Plant J ; 52(5): 791-802, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17892446

RESUMEN

Members of a large family of cellulose synthase-like genes (CSLs) are predicted to encode glycosyl transferases (GTs) involved in the biosynthesis of plant cell walls. The CSLA and CSLF families are known to contain mannan and glucan synthases, respectively, but the products of other CSLs are unknown. Here we report the effects of disrupting ATCSLD5 expression in Arabidopsis. Both stem and root growth were significantly reduced in ATCSLD5 knock-out plants, and these plants also had increased susceptibility to the cellulose synthase inhibitor isoxaben. Antibody and carbohydrate-binding module labelling indicated a reduction in the level of xylan in stems, and in vitro GT assays using microsomes from stems revealed that ATCSLD5 knock-out plants also had reduced xylan and homogalacturonan synthase activity. Expression in Nicotiana benthamiana of ATCSLD5 and ATCSLD3, fluorescently tagged at either the C- or the N-terminal, indicated that these GTs are likely to be localized in the Golgi apparatus. However, the position of the fluorescent tag affected the subcellular localization of both proteins. The work presented provides a comprehensive analysis of the effects of disrupting ATCSLD5 in planta, and the possible role(s) of this gene and other ATCSLDs in cell wall biosynthesis are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucosiltransferasas/metabolismo , Pentosiltransferasa/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Benzamidas/farmacología , Glucosiltransferasas/análisis , Glucosiltransferasas/genética , Glucuronidasa/análisis , Pectinas/biosíntesis , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética
18.
Plant Physiol ; 141(3): 1035-44, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16714406

RESUMEN

Quantitative trait loci (QTL) analysis was used to identify genes underlying natural variation in primary cell wall composition in Arabidopsis (Arabidopsis thaliana). The cell walls of dark-grown seedlings of a Bay-0 x Shahdara recombinant inbred line population were analyzed using three miniaturized global cell wall fingerprinting techniques: monosaccharide composition analysis by gas chromatography, xyloglucan oligosaccharide mass profiling, and whole-wall Fourier-transform infrared microspectroscopy. Heritable variation and transgression were observed for the arabinose-rhamnose ratio, xyloglucan side-chain composition (including O-acetylation levels), and absorbance for a subset of Fourier-transform infrared wavenumbers. In total, 33 QTL, corresponding to at least 11 different loci controlling dark-grown hypocotyl length, pectin composition, and levels of xyloglucan fucosylation and O-acetylation, were identified. One major QTL, accounting for 51% of the variation in the arabinose-rhamnose ratio, affected the number of arabinan side chains presumably attached to the pectic polysaccharide rhamnogalacturonan I, paving the way to positional cloning of the first gene underlying natural variation in pectin structure. Several QTL were found to be colocalized, which may have implications for the regulation of xyloglucan metabolism. These results demonstrate the feasibility of combining fingerprinting techniques, natural variation, and quantitative genetics to gain original insight into the molecular mechanisms underlying the structure and metabolism of cell wall polysaccharides.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Plantones/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabinosa/metabolismo , Variación Genética , Glucanos/metabolismo , Hipocótilo/crecimiento & desarrollo , Monosacáridos/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo , Ramnosa/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Xilanos/metabolismo
19.
Plant Cell Physiol ; 46(12): 1987-2004, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16230332

RESUMEN

During starch degradation, chloroplasts export neutral sugars into the cytosol where they appear to enter a complex glycan metabolism. Interactions between glycans and glucosyl transferases residing in the cytosol were studied by analyzing transgenic potato (Solanum tuberosum L.) plants that possess either decreased or elevated levels of the cytosolic (Pho 2) phosphorylase isoform. Water-soluble heteroglycans (SHGs) were isolated from these plants and were characterized. SHG contains, as major constituents, arabinose, rhamnose, galactose and glucose. Non-aqueous fractionation combined with other separation techniques revealed a distinct pool of the SHG that is located in the cytosol. Under in vitro conditions, the cytosolic heteroglycans act as glucosyl acceptor selectively for Pho 2. Acceptor sites were characterized by a specific hydrolytic degradation following the Pho 2-catalyzed glucosyl transfer. The size distribution of the cytosolic SHG increased during the dark period, indicating a distinct metabolic activity related to net starch degradation. Antisense inhibition of Pho 2 resulted in increased glucosyl and rhamnosyl contents of the glycans. Overexpression of Pho 2 decreased the content of both residues. Compared with the wild type, in both types of transgenic plants the size of the cytosolic glycans was increased.


Asunto(s)
Citosol/química , Regulación de la Expresión Génica de las Plantas , Fosforilasas/genética , Hojas de la Planta/química , Polisacáridos/análisis , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Adaptación Fisiológica/fisiología , Arabinosa/metabolismo , Northern Blotting , Conformación de Carbohidratos , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Galactosa/metabolismo , Glucosa/metabolismo , Glicósido Hidrolasas/farmacología , Inmunohistoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilasas/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Ramnosa/metabolismo , Solanum tuberosum/enzimología , Especificidad por Sustrato
20.
Plant Physiol ; 134(1): 286-95, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14671019

RESUMEN

Pectins are major components of primary plant cell walls and the seed mucilage of Arabidopsis. Despite progress in the structural elucidation of pectins, only very few enzymes participating in or regulating their synthesis have been identified. A first candidate gene involved in the synthesis of pectinaceous rhamnogalacturonan I is RHM2, a putative plant ortholog to NDP-rhamnose biosynthetic enzymes in bacteria. Expression studies with a promoter beta-glucuronidase construct and reverse transcription PCR data show that RHM2 is expressed ubiquitously. Rhm2 T-DNA insertion mutant lines were identified using a reverse genetics approach. Analysis of the rhm2 seeds by various staining methods and chemical analysis of the mucilage revealed a strong reduction of rhamnogalacturonan I in the mucilage and a decrease of its molecular weight. In addition, scanning electron microscopy of the seed surface indicated a distorted testa morphology, illustrating not only a structural but also a developmental role for RGI or rhamnose metabolism in proper testa formation.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Pectinas/biosíntesis , Adhesivos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/embriología , Secuencia de Bases , ADN de Plantas/genética , Genes de Plantas , Datos de Secuencia Molecular , Mutación , Pectinas/química , Fenotipo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA