Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 353: 120204, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38278116

RESUMEN

Biochar (BC) and phosphate rocks (PR) are alternative nutrient sources with multiple benefits for sustainable agriculture. The combination of these soil amendments serves two main purposes: to increase soil phosphorus (P) availability and to remediate heavy metal (HM) contamination. However, a further demonstration of the benefits and risks associated with the combined use of BC and PR (BC + PR) is needed, considering the specific characteristics of raw materials, soil types, experimental conditions, and climatic contexts. This meta-analysis is based on data from 28 selected studies, including 581 paired combinations evaluating effects on extraction and fractionation of cadmium (Cd) and lead (Pb), and 290 paired combinations for soil labile and non-labile P. The results reveal that BC, PR, and BC + PR significantly increase soil labile and non-labile P, with BC + PR showing a 150% greater increase compared to BC alone. In tropical regions, substantial increases in P levels were observed with BC, PR, and BC + PR exhibiting increments of 317, 798, and 288%, respectively. In contrast, temperate climate conditions showed lower increases, with BC, PR, and BC + PR indicating 54, 123, and 88% rises in soil P levels. Moreover, BC, PR, and BC + PR effectively reduce the bioavailability of Cd and Pb in soil, with BC + PR demonstrating the highest efficacy in immobilizing Cd. The synergistic effect of BC + PR highlights their potential for Cd remediation. BC + PR effectively reduces the exchangeable fraction of Cd and Pb in soil, leading to their immobilization in more stable forms, such as the residual fraction. This study provides valuable insights into the remediation potential and P management benefits of BC and PR, highlighting their importance for sustainable agriculture and soil remediation practices.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio , Fosfatos , Fósforo , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbón Orgánico , Suelo
2.
Waste Manag ; 124: 144-153, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33621758

RESUMEN

Sewage sludge-derived biochar (SSB) is a phosphorus (P) source with potential to replace soluble P fertilizers. However, SSB presents a diversity of P compounds, mainly in mineral forms with different degrees of chemical stability. This hinders the prediction of P bioavailability. In the present study we evaluated P solubility and bioavailability using different chemical extractants. Additionally, the relationships between extractable P and physicochemical properties were evaluated for SSB obtained over a wide range of temperatures (200 °C; 300 °C; 500 °C and 600 °C). Available phosphorus content was extracted using 2% citric acid (P-CA), neutral ammonium citrate + water (P-NAC) and Mehlich 1 solution (0.0125 mol L-1 H2SO4 + 0.050 mol L-1 HCl). Physicochemical properties and extractable P were strongly affected by pyrolysis temperature. Higher pyrolysis temperature resulted in increased pH, BET surface area, pore volume, ash, fixed carbon, Ca, Mg and Zn contents, as well as formation of stable Ca minerals (calcite and oxalate). The total P content increased with pyrolysis temperature (≥300 °C). Nevertheless, the solubility of biochar-P in the extractants presented different trends with temperature. The P-NAC content reached a maximum (79% of TP) at 300 °C and then declined at higher temperatures. Only at 600 °C P-CA and available P were affected by the temperature, where the P-CA increased and available P decreased. Therefore, it is recommended that the P solubility in different extractants should be considered when using SSB as an alternative to inorganic P fertilizers.


Asunto(s)
Pirólisis , Aguas del Alcantarillado , Carbón Orgánico , Fertilizantes , Fósforo , Temperatura
3.
Sci Total Environ ; 739: 140013, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540669

RESUMEN

Measures to improve the use of phosphorus (P), either by improved efficiency or reuse, are needed worldwide in order to preserve a finite resource and ensure that farmers have access to it. Currently, the rapidly growing global population has generated an increased demand for this mineral. Sustainably disposing for the massive amount of globally produced biosolids and alternative sources of P for agriculture are two major challenges to address. In this scenario, biosolids-derived biochar (BBC) has been presented as a win-win opportunity. However, the BBC-P dynamics in soil over consecutive cropping seasons remain unclear. Direct (first and second cropping season) and residual (third and fourth cropping season) effects of BBC on soil P fractions, P uptake and corn grain yield were assessed. Additionally, the relationships between soil P pools and grain yield were investigated by multivariate and multiple linear regression analysis. In a field experiment, BBC produced at 300 °C (BC 300) and 500 °C (BC 500) were applied to an Oxisol at a rate of 15 t ha-1. Soil total P and its fractions (organic P, inorganic P, and available P) were determined. Phosphorus uptake and corn grain yield were also evaluated. BBC, regardless of pyrolysis temperature, increased soil total P and all P fractions. Moreover, BBC maintained high soil P contents for at least two years after stopping its application. These results suggest that BBC may act as a slow-release P fertilizer. Surprisingly, soil P fractions were unaffected by different pyrolysis temperatures, but BC 300 promoted higher grain yield than BC 500 in the third and fourth cropping seasons. Overall, the results confirmed that under direct application both biochars can replace mineral fertilization for corn production; and when considering the residual effect, BC 300 showed a higher potential to be utilized as a soil amendment for P supply.


Asunto(s)
Fósforo , Suelo , Biosólidos , Carbón Orgánico , Fertilizantes/análisis
4.
J Environ Qual ; 48(4): 1091-1099, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31589692

RESUMEN

Transformation of soil Pb to pyromorphites and phosphates has the potential to be an effective strategy to immobilize this contaminant in situ. Soil treatment using monocalcium phosphate, a commercial fertilizer (NTS Soft Rock) and biochars prepared from poultry litter and from biosolids at three different temperatures (300, 400, and 500°C) and two doses (1 and 3%) were evaluated. Lead bioaccesibility, mobility, and solid speciation were measured. Leachable Pb (determined with the toxicity characterized leaching procedure) was not significantly ( > 0.05) changed after biochar addition, but a significant decrease in bioaccesible Pb was found for several treatments ( < 0.05). This was particularly notable for treatments receiving biosolids prepared at 400 and at 500°C or monocalcium phosphate at the 3% dose. The decrease in bioaccesible Pb concentration in the biochar treatments was similar to traditional phosphate amendments. Our research found transformation of Pb species to the more stable pyromorphite and Pb-phosphate to be partially responsible for the observed changes, although other mechanisms, including pH changes, might also play an important role. Overall, pyrolysis was an effective method to upgrade waste streams and facilitate Pb immobilization, although key pyrolysis parameters need to be selected carefully.


Asunto(s)
Fósforo , Contaminantes del Suelo , Carbón Orgánico , Plomo , Suelo
5.
ScientificWorldJournal ; 2014: 135906, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610893

RESUMEN

Proper and effective management of soil nutrients requires assessment of their variability at the field scale. We compare the effects of lime amendment rate on the spatial variability of three macronutrient forms (NH4 (+)-N, Olsen P, and Mehlich-1 K) in a paddy soil at three different dates during the growth period of a rice crop. The field work was carried out near Corrientes, Argentina. Lime treatments were 0, 625, and 1250 kg ha(-1) dolomite, and each liming dose was applied to a 1.7 ha field. Ninety-three soil samples per treatment were first collected in aerobic conditions and then two more times after flooding, at bunch formation and flowering. Soil NH4 (+)-N increased along time, whereas P was highest at bunch formation and K steadily decreased along the rice growth period. Dolomite addition increased macronutrient availability at the first and second samplings, but its effects at the third sampling depended on the element. The three soil nutrients analyzed displayed strong patterns of spatial dependence for the three lime treatments and at the three periods studied. The areas with relative high or low macronutrient concentrations within each field were not stable throughout the rice growth period. Seasonality in the spatial distribution of macronutrients may be of agronomic value for site specific management.


Asunto(s)
Compuestos de Amonio/química , Oryza/crecimiento & desarrollo , Fósforo/química , Potasio/química , Compuestos de Amonio/aislamiento & purificación , Argentina , Productos Agrícolas , Monitoreo del Ambiente , Fertilizantes , Humanos , Oryza/química , Fósforo/aislamiento & purificación , Potasio/aislamiento & purificación , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA