Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioelectromagnetics ; 43(8): 453-461, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36477897

RESUMEN

Muscle atrophy refers to the deterioration of muscle tissue due to a long-term decrease in muscle function. In the present study, we simulated rectus femoris muscle atrophy experimentally and investigated the effect of pulsed electromagnetic field (PEMF) application on the atrophy development through muscle mass, maximal contraction force, and contraction-relaxation time. A quadriceps tendon rupture with a total tenotomy was created on the rats' hind limbs, inhibiting knee extension for 6 weeks, and this restriction of the movement led to the development of disuse atrophy, while the control group underwent no surgery. The operated and control groups were divided into subgroups according to PEMF application (1.5 mT for 45 days) or no PEMF. All groups were sacrificed after 6 weeks and had their entire rectus femoris removed. To measure the contraction force, the muscles were placed in an organ bath connected to a transducer. As a result of the atrophy, muscle mass and strength were reduced in the operated group, while no muscle mass loss was observed in the operated PEMF group. Furthermore, measurements of single, incomplete and full tetanic contraction force and contraction time (CT) did not change significantly in the operated group that received the PEMF application. The PEMF application prevented atrophy resulting from 6 weeks of immobility, according to the contraction parameters. The effects of PEMF on contraction force and CT provide a basis for further studies in which PEMF is investigated as a noninvasive therapy for disuse atrophy development. © 2022 Bioelectromagnetics Society.


Asunto(s)
Atrofia Muscular , Trastornos Musculares Atróficos , Ratas , Animales , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Campos Electromagnéticos , Músculos
2.
Croat Med J ; 61(1): 55-61, 2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32118379

RESUMEN

AIM: To determine how daylight exposure in mice affects melatonin protein expression in blood and Kiss1 gene expression in the hypothalamus. The second aim was to assess the relationship between skin cancer formation, daylight exposure, melatonin blood level, and kisspeptin gene expression level. METHODS: New-born mice (n=96) were assigned into the blind group or daylight group. The blind group was raised in the dark and the daylight group was raised under 12 hours light/12 hours dark cycle for 17 weeks. At the end of the 11th week, melanoma cell line was inoculated to mice, and tumor growth was observed for 6 weeks. At the end of the experiment, melatonin level was measured from blood serum and Kiss1 expression from the hypothalamus. RESULTS: The blind group had significantly higher melatonin and lower Kiss1 expression levels than the daylight group. Tumor volume was inversely proportional to melatonin levels and directly proportional to Kiss1 expression levels. Tumor growth speed was lower in the blind than in the daylight group. CONCLUSION: Melatonin and Kiss1 were shown to be nvolved in tumor suppression. They were affected by daylight and were mutually affected by each other.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Kisspeptinas/genética , Melanoma/patología , Melatonina/sangre , Fotoperiodo , Neoplasias Cutáneas/patología , Animales , Animales Recién Nacidos , Femenino , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos BALB C
3.
Artículo en Inglés | MEDLINE | ID: mdl-29887910

RESUMEN

AIMS: The aim of this study was to investigate the effects of pterostilbene (PTS) (trans-3,5-dimethoxy-4'-hydroxystilbene) and resveratrol (RSV) (trans-3,5,4' trihydroxystilbene) applied at different doses for the treatment of streptozotocin- (STZ-) induced diabetic rats. MATERIALS AND METHODS: At the end of the 5-week experimental period, the right gastrocnemius muscles of the rats were examined biomechanically, while the left ones were examined histologically. In addition, blood glucose, serum insulin, and malondialdehyde (MDA) levels were analyzed in blood samples taken from the rats. RESULTS: The skeletal muscle isometric contraction forces, which showed a decrease with diabetes, were observed to increase with antioxidant applications. Blood glucose, serum insulin, and MDA levels in diabetic rats approached normal levels after applying PTS. When the electron microscopic images of the rat skeletal muscle were examined, those in the combination treatment group were observed to show a better enhancement in the skeletal muscle morphological structure compared to the other diabetic and treatment groups. CONCLUSION: According to the findings, we suggest that these antioxidant treatments might have good therapeutic nutraceutical potential for some muscle diseases that coexist with diabetes. These treatments should be comprehensively investigated in the future.

4.
Cell Biochem Biophys ; 65(3): 315-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23080019

RESUMEN

To present the relationship between oral magnesium supplementation, blood glucose, and changes in isometric twitch parameters, resting membrane potential (RMP), in the gastrocnemius muscle in diabetic rats. Sixty rats were used in this study. The rats were divided into four groups: control (drinking tap water, Group I, n = 15), control with treated with magnesium sulfate (10 g/L) (Group II, n = 15), diabetic (Group III, n = 15), and diabetic with treated with magnesium sulfate (10 g/L) (Group IV, n = 15). In Group II and IV, the level of plasma magnesium was increased comparing to those of the control group (p < 0.05). Isometric twitch tensions were decreased significantly in the Group III, but Group IV isometric twitch tensions were increased significantly. Group IV RMP values were close to the Group I. Hyperglycemia decreases gastrocnemius muscle isometric twitch tension and increases RMP in diabetic rats. Magnesium treatment can prevent these diabetic complications.


Asunto(s)
Magnesio/farmacología , Potenciales de la Membrana/efectos de los fármacos , Músculo Esquelético/fisiología , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Magnesio/sangre , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA