Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 2): 127883, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931865

RESUMEN

Acetylated chitin nanocrystals (ChNCs) were used as stabilizer in this work to prepare sunflower seed oil-in-water emulsions for the morphological and rheological studies. The results revealed that the acetylation with moderate degree of substitution (0.38) reduced hydrophilicity and increased surface charge level of rod-like ChNCs, and as a result, significantly improved the emulsifying ability of ChNCs. At the same oil/water ratio and particle loading, the emulsions stabilized with the acetylated ChNCs had far smaller droplet size (∼3 µm) as compared to the emulsions stabilized with the pristine ChNCs (5-7 µm). The increased droplets numbers and improved surface coating level resulted in the enhanced viscous resistance and yield stress level, which improved the physical stability of the acetylated ChNC-stabilized emulsions as a result. In addition, the droplet clusters easily formed in this system, contributing to weak strain overshoot and decreased large-deformation sensitivity during dynamic shear flow. Therefore, the acetylated ChNC-stabilized system showed enhanced transient stress overshoot during startup flow and weakened thixotropy during cyclic ramp shear flow as compared to the pristine ChNC-stabilized system. The relationships between surface acetylation of ChNCs and flow behavior of emulsions were then established, which provide valuable information on the modulation of the ChNC-stabilized Pickering emulsions.


Asunto(s)
Quitina , Nanopartículas , Emulsiones/química , Aceite de Girasol , Quitina/química , Acetilación , Tamaño de la Partícula , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA