Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Tradicionales
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 15(8)2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37631995

RESUMEN

The search for alternative clinical treatments to fight resistance and find alternative antiviral treatments for the herpes simplex virus (HSV) is of great interest. Plants are rich sources of novel antiviral, pharmacologically active agents that provide several advantages, including reduced side effects, less resistance, low toxicity, and different mechanisms of action. In the present work, the antiviral activity of Californian natural raw (NRRE) and roasted unsalted (RURE) pistachio polyphenols-rich extracts was evaluated against HSV-1 using VERO cells. Two different extraction methods, with or without n-hexane, were used. Results showed that n-hexane-extracted NRRE and RURE exerted an antiviral effect against HSV-1, blocking virus binding on the cell surface, affecting viral DNA synthesis as well as accumulation of ICP0, UL42, and Us11 viral proteins. Additionally, the identification and quantification of phenolic compounds by RP-HPLC-DAD confirmed that extraction with n-hexane exclusively accumulated tocopherols, carotenoids, and xanthophylls. Amongst these, zeaxanthin exhibited strong antiviral activity against HSV-1 (CC50: 16.1 µM, EC50 4.08 µM, SI 3.96), affecting both the viral attachment and penetration and viral DNA synthesis. Zeaxanthin is a dietary carotenoid that accumulates in the retina as a macular pigment. The use of pistachio extracts and derivates should be encouraged for the topical treatment of ocular herpetic infections.


Asunto(s)
Herpesvirus Humano 1 , Pistacia , Chlorocebus aethiops , Animales , Zeaxantinas/farmacología , ADN Viral , Células Vero , Antivirales/farmacología , Carotenoides , Extractos Vegetales/farmacología
2.
Nutrients ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986275

RESUMEN

The almond industry produces, by bleaching and stripping, two by-products: blanched skin (BS) and blanch water (BW). The aim of this study was to investigate the nutritional and polyphenolic profile, as well as the antioxidant, antimicrobial, antiviral, and potential prebiotic effects of BS and BW from three different Sicilian cultivars. The total phenols and flavonoids contents were ≥1.72 and ≥0.56 g gallic acid equivalents and ≥0.52 and ≥0.18 g rutin equivalents/100 g dry extract (DE) in BS and BW, respectively. The antioxidant activity, evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging ability, trolox equivalent antioxidant capacity, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, was ≥3.07 and ≥0.83 g trolox equivalent/100 g DE in BS and BW, respectively. Isorhamnetin-3-O-glucoside was the most abundant flavonoid detected in both by-products. No antimicrobial effect was recorded, whereas BS samples exerted antiviral activity against herpes simplex virus 1 (EC50 160.96 µg/mL). BS also showed high fibre (≥52.67%) and protein (≥10.99) contents and low fat (≤15.35%) and sugars (≤5.55%), making it nutritionally interesting. The present study proved that the cultivar is not a discriminating factor in determining the chemical and biological properties of BS and BW.


Asunto(s)
Antioxidantes , Prunus dulcis , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/farmacología , Flavonoides/química , Fenoles/farmacología , Fenoles/química
3.
Biomolecules ; 13(2)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830607

RESUMEN

The present study aims to assess the antioxidant and antiviral effectiveness of leaf extracts obtained from Olea europaea L. var. sativa and Olea europaea L. var. sylvestris. The total antioxidant activity was determined via both an ammonium phosphomolybdate assay and a nitric oxide radical inhibition assay. Both extracts showed reducing abilities in an in vitro system and in human HeLa cells. Indeed, after oxidative stress induction, we found that exposition to olive leaf extracts protects human HeLa cells from lipid peroxidation and increases the concentration of enzyme antioxidants such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase. Additionally, OESA treatment affects viral DNA accumulation more than OESY, probably due to the exclusive oleuropein content. In fact, subtoxic concentrations of oleuropein inhibit HSV-1 replication, stimulating the phosphorylation of PKR, c-FOS, and c-JUN proteins. These results provide new knowledge about the potential health benefits and mechanisms of action of oleuropein and oleuropein-rich extracts.


Asunto(s)
Neoplasias , Olea , Humanos , Antioxidantes/farmacología , Olea/metabolismo , Células HeLa , Iridoides , Extractos Vegetales/farmacología
4.
Viruses ; 14(12)2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36560643

RESUMEN

Punica granatum is a rich source of bioactive compounds which exhibit various biological effects. In this study, pomegranate peel and leaf ethanolic crude extracts (PPE and PLE, respectively) were phytochemically characterized and screened for antioxidant, antimicrobial and antiviral activity. LC-PDA-ESI-MS analysis led to the identification of different compounds, including ellagitannins, flavonoids and phenolic acids. The low IC50 values, obtained by DPPH and FRAP assays, showed a noticeable antioxidant effect of PPE and PLE comparable to the reference standards. Both crude extracts and their main compounds (gallic acid, ellagic acid and punicalagin) were not toxic on Vero cells and exhibited a remarkable inhibitory effect on herpes simplex type 1 (HSV-1) viral plaques formation. Specifically, PPE inhibited HSV-1 adsorption to the cell surface more than PLE. Indeed, the viral DNA accumulation, the transcription of viral genes and the expression of viral proteins were significantly affected by PPE treatment. Amongst the compounds, punicalagin, which is abundant in PPE crude extract, inhibited HSV-1 replication, reducing viral DNA and transcripts accumulation, as well as proteins of all three phases of the viral replication cascade. In contrast, no antibacterial activity was detected. In conclusion, our findings indicate that Punica granatum peel and leaf extracts, especially punicalagin, could be a promising therapeutic candidate against HSV-1.


Asunto(s)
Herpesvirus Humano 1 , Lythraceae , Granada (Fruta) , Animales , Chlorocebus aethiops , Extractos Vegetales/química , Células Vero , ADN Viral , Lythraceae/química , Antioxidantes/farmacología
5.
Plants (Basel) ; 10(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34834807

RESUMEN

Olea europaea L. var. sativa (OESA) preparations are widely used in traditional medicine in the Mediterranean region to prevent and treat different diseases. In this research, olive extracts derived from the leaves of the OESA tree have been screened for antioxidant activity by two methods: the DPPH free radical scavenging assay (DPPH) and the Ferric reducing antioxidant power (FRAP) assay. The DPPH assay showed that OESA possesses a stronger antioxidant activity (84%) at 1 mg/mL while the FRAP method showed a strong metal ion chelating activity (90%) at 1 mg/mL. The low IC50 values, obtained by two different methods, implies that OESA has a noticeable effect on scavenging free radicals comparable to standards. During EBV infection, the free radicals increased triggering lipid oxidation. Therefore, the monitoring of the secondary lipid peroxidation products was done by measuring malonaldehyde (MDA) and conjugated dienes (DC). The simultaneous treatment of Raji cells with OESA and TPA, as an inductorof the lytic cycle, generated a significant decrease in MDA levels and DC (p < 0.05). Besides, Raji cells simultaneously exposed to TPA and OESA exhibited a percentage of EBV-positive fluorescence cells lower than TPA treated cells (**** p < 0.0001). This suggests that OESA treatment has a protective effect against EBV lytic cycle induction.

6.
Viruses ; 13(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200316

RESUMEN

Owing to the richness of bioactive compounds, Olea europea leaf extracts exhibit a range of health effects. The present research evaluated the antibacterial and antiviral effect of leaf extracts obtained from Olea europea L. var. sativa (OESA) and Olea europea var. sylvestris (OESY) from Tunisia. LC-DAD-ESI-MS analysis allowed the identification of different compounds that contributed to the observed biological properties. Both OESA and OESY were active against Gram-positive bacteria (MIC values between 7.81 and 15.61 µg/mL and between 15.61 and 31.25 µg/mL against Staphylococcus aureus ATCC 6538 for OESY and OESA, respectively). The antiviral activity against the herpes simplex type 1 (HSV-1) was assessed on Vero cells. The results of cell viability indicated that Olea europea leaf extracts were not toxic to cultured Vero cells. The half maximal cytotoxic concentration (CC50) values for OESA and OESY were 0.2 mg/mL and 0.82 mg/mL, respectively. Furthermore, both a plaque reduction assay and viral entry assay were used to demonstrate the antiviral activity. In conclusion, Olea europea leaf extracts demonstrated a bacteriostatic effect, as well as remarkable antiviral activity, which could provide an alternative treatment against resistant strains.


Asunto(s)
Antibacterianos/farmacología , Antivirales/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Olea/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Supervivencia Celular , Chlorocebus aethiops , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/efectos de los fármacos , Herpes Simple/tratamiento farmacológico , Fitoquímicos , Extractos Vegetales/química , Células Vero
7.
Viruses ; 13(5)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064347

RESUMEN

Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Descubrimiento de Drogas , Animales , Antivirales/química , Antivirales/uso terapéutico , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Virus ADN/efectos de los fármacos , Virus ADN/fisiología , Desarrollo de Medicamentos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Virus ARN/efectos de los fármacos , Virus ARN/fisiología , Virosis/diagnóstico , Virosis/tratamiento farmacológico , Virosis/etiología , Virosis/metabolismo , Replicación Viral/efectos de los fármacos
8.
Nutrients ; 11(10)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623329

RESUMEN

Due to their antimicrobial and antiviral activity potential in vitro, polyphenols are gaining a lot of attention from the pharmaceutical and healthcare industries. A novel antiviral and antimicrobial approach could be based on the use of polyphenols obtained from natural sources. Here, we tested the antibacterial and antiviral effect of a mix of polyphenols present in natural almond skin (NS MIX). The antimicrobial potential was evaluated against the standard American Type Culture Collection (ATCC) and clinical strains of Staphylococcus aureus, including methicillin-resistant (MRSA) strains, by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Herpes simplex virus type I was used for the antiviral assessment of NS MIX by plaque assay. Furthermore, we evaluated the expression of viral cascade antigens. NS MIX exhibited antimicrobial (MIC values of 0.31-1.25 mg/ml) and antiviral activity (decrease in the viral titer ** p < 0.01, and viral DNA accumulation * p < 0.05) against Staphylococcus aureus and HSV-1, respectively. Amongst the isolated compounds, the aglycones epicatechin and catechin showed the greatest activity against S. aureus ATCC 6538P (MIC values of 0.078-0.15 and 0.15 mg/ml, respectively), but were not active against all the other strains. These results could be used to develop novel products for topical use.


Asunto(s)
Antiinfecciosos/farmacología , Antivirales/farmacología , Polifenoles/farmacología , Prunus dulcis/química , Semillas/química , Animales , Chlorocebus aethiops , ADN Viral/análisis , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/genética , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Polifenoles/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Células Vero/virología
9.
Viruses ; 9(7)2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28698509

RESUMEN

The aim of the present research was to determine the effect of almond skin extracts on herpes simplex virus 1 (HSV-1) replication. Drug-resistant strains of HSV frequently develop following therapeutic treatment. Therefore, the discovery of novel anti-HSV drugs deserves great effort. Here, we tested both natural (NS) and blanched (BS) polyphenols-rich almond skin extracts against HSV-1. HPLC analysis showed that the prevalent compounds in NS and BS extracts contributing to their antioxidant activity were quercetin, epicatechin and catechin. Results of cell viability indicated that NS and BS extracts were not toxic to cultured Vero cells. Furthermore, NS extracts were more potent inhibitors of HSV-1 than BS extracts, and this trend was in agreement with different concentrations of flavonoids. The plaque forming assay, Western blot and real-time PCR were used to demonstrate that NS extracts were able to block the production of infectious HSV-1 particles. In addition, the viral binding assay demonstrated that NS extracts inhibited HSV-1 adsorption to Vero cells. Our conclusion is that natural products from almond skin extracts are an extraordinary source of antiviral agents and provide a novel treatment against HSV-1 infections.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Extractos Vegetales/farmacología , Prunus dulcis/química , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Antivirales/toxicidad , Productos Biológicos/toxicidad , Western Blotting , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Herpesvirus Humano 1/fisiología , Extractos Vegetales/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Vero , Ensayo de Placa Viral
10.
Colloids Surf B Biointerfaces ; 146: 590-7, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27424090

RESUMEN

The combination of conventional anticancer therapy with other treatment modalities such as photodynamic therapy (PDT) is paving the way to novel more effective treatment of solid tumors via light exposure. With this idea in mind, in this paper, nanoparticles (NPs) based on Heptakis (2-oligo(ethyleneoxide)-6-hexadecylthio-)-ß-CD (SC16OH) for dual delivery of Zinc-Phthalocyanine (ZnPc) and Docetaxel (DTX) were developed pointing to their potential application as nanomedicine for the combined photodynamic and chemo-therapy of solid tumors. NPs prepared by the emulsion-solvent evaporation technique displayed a hydrodynamic diameter of ≅ 200nm, a negative zeta potential (≅ -27mV) and a satisfactory entrapment efficiency of both drugs at a specific mass ratio. On these bases, NPs containing DTX and ZnPc with theoretical loading of 5% and 0.2% respectively (ZnPc/DTX5-NPs) were selected for further investigations. The allocation of ZnPc and DTX into the colloid was investigated by complementary spectroscopic techniques. In particular, fluorescence emission studies showed the entrapment of ZnPc as a monomer in the carrier, with a low tendency to self-aggregate and consequently a fairly high propensity to photogenerate singlet oxygen. The interaction of SC16OH with DTX, co-entrapped with ZnPc, was elucidated by (1)H NMR and 2D ROESY, which suggested the presence of the chemotherapeutic in the hydrophobic portion of SC16OH. ZnPc/DTX5-NPs were fairly stable in different biological relevant media within 24h. Finally, in vitro potential of the nanoassembly was evaluated in HeLa cancer cells by cell viability exploring both effects of DTX and ZnPc. Overall, results suggest the suitability of NPs based on SC16OH for delivering a combination of DTX with ZnPc to cancer cells, thus inducing photodynamic and antimitotic effects.


Asunto(s)
Ciclodextrinas/química , Indoles/química , Compuestos Organometálicos/química , Tensoactivos/química , Taxoides/química , Supervivencia Celular/efectos de los fármacos , Docetaxel , Células HeLa , Humanos , Indoles/farmacología , Isoindoles , Compuestos Organometálicos/farmacología , Taxoides/farmacología , Compuestos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA