Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Radiat Res ; 57(4): 343-55, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26937024

RESUMEN

The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined-(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure-in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5-6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure.


Asunto(s)
Partículas alfa/efectos adversos , Embrión no Mamífero/efectos de la radiación , Uranio/efectos adversos , Pez Cebra/embriología , Análisis de Varianza , Animales , Apoptosis/efectos de la radiación , Femenino , Masculino , Dosis de Radiación
2.
J Environ Radioact ; 154: 25-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26829549

RESUMEN

We examined the effects of chronic exposure to different concentrations (2 and 20 µg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 µg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 µg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 µg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects.


Asunto(s)
Metilación/efectos de la radiación , Uranio/toxicidad , Contaminantes Radiactivos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Femenino , Masculino , Especificidad de Órganos , Factores Sexuales , Espectrometría de Masas en Tándem
3.
J Environ Radioact ; 142: 45-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25633624

RESUMEN

Uranium is a naturally occurring element, but activities linked to the nuclear fuel cycle can increase background levels in the surrounding waters. For this reason it is important to understand how this affects organisms residing in the water column. The objective of this study was to assess histopathological effects of uranium on the gut wall of a widely used model organism: zebrafish, Danio rerio. To this end we exposed zebrafish to 84 and 420 nM depleted uranium for over a month and then examined the histology of intestines of exposed individuals compared to controls. The gut wall of individuals exposed to 84 and 420 nM of uranium had large regions of degraded mucosa. Using transmission electron microscopy (TEM) coupled to energy-dispersive X-ray spectroscopy microanalysis (EDX) we found that uranium induced a decrease in the amount of calcium containing mitochondrial matrix granules per mitochondria. This is suggestive of perturbations to cellular metabolism and more specifically to cellular calcium homeostasis. TEM-EDX of the gut wall tissue further showed that some uranium was internalized in the nucleus of epithelial cells in the 420 nM treatment. Fluorescent in situ hybridization using specific probes to detect all eubacteria was performed on frozen sections of 6 individual fish in the 84 nM and 420 nM treatments. Bacterial colonization of the gut of individuals in the 420 nM seemed to differ from that of the controls and 84 nM individuals. We suggest that host-microbiota interactions are potentially disturbed in response to uranium induced stress. The damage induced by waterborne uranium to the gut wall did not seem to depend on the concentration of uranium in the media. We measure whole body residues of uranium at the end of the experiment and compute the mean dose rate absorbed for each condition. We discuss why effects might be uncoupled from external concentration and highlight that it is not so much the external concentration but the dynamics of internalization which are important players in the game.


Asunto(s)
Microbioma Gastrointestinal/efectos de la radiación , Uranio/toxicidad , Contaminantes Radiactivos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Femenino , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/efectos de la radiación , Tracto Gastrointestinal/ultraestructura , Hibridación Fluorescente in Situ , Microscopía Electrónica de Transmisión , Espectrometría por Rayos X , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo
4.
Aquat Toxicol ; 154: 1-11, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24846854

RESUMEN

Despite the well-characterized occurrence of uranium (U) in the aquatic environment, very little is known about the chronic exposure of fish to low levels of U and its potential effect on reproduction. Therefore, this study was undertaken to investigate the effects of environmental concentrations of depleted U on the reproductive output of zebrafish (Danio rerio) and on survival and development of the F1 embryo-larvae following parental exposure to U. For that purpose, sexually mature male and female zebrafish were exposed to 20 and 250 µg/L of U for 14 days and allowed to reproduce in clean water during a further 14-day period. At all sampling times, whole-body vitellogenin concentrations and gonad histology were analyzed to investigate the effects of U exposure on these reproductive endpoints. In addition, accumulation of U in the gonads and its genotoxic effect on male and female gonad cells were quantified. The results showed that U strongly affected the capability of fish to reproduce and to generate viable individuals as evidenced by the inhibition of egg production and the increased rate of mortality of the F1 embryos. Interestingly, U exposure resulted in decreased circulating concentrations of vitellogenin in females. Increased concentrations of U were observed in gonads and eggs, which were most likely responsible for the genotoxic effects seen in fish gonads and in embryos exposed maternally to U. Altogether, these findings highlight the negative effect of environmentally relevant concentrations of U which alter the reproductive capability of fish and impair the genetic integrity of F1 embryos raising further concern regarding its effect at the population level.


Asunto(s)
Uranio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología , Animales , Tamaño de la Nidada/efectos de los fármacos , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Femenino , Gónadas/química , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Gónadas/ultraestructura , Humanos , Masculino , Mutágenos/análisis , Mutágenos/toxicidad , Reproducción/efectos de los fármacos , Análisis de Supervivencia , Uranio/análisis , Vitelogeninas/metabolismo , Pez Cebra/crecimiento & desarrollo
5.
Aquat Toxicol ; 109: 11-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22204984

RESUMEN

Uranium is a metal used in the nuclear industry and for military applications. Studies on mammals have shown that uranium is genotoxic. However the molecular and cellular mechanisms responsible for the genotoxicity of uranium are poorly known for other types of vertebrates such as fish. Since unrepaired DNA double-strand breaks (DSBs) are considered to be key lesions in cell lethality, the activity of one of the major DSB-repair pathways, i.e. non-homologous end-joining (NHEJ), has been evaluated in embryonic zebrafish cells (ZF4) exposed to uranium. Genotoxicity of uranium in ZF4 cells was further assessed by comet and micronucleus assays. Exposure to uranium results in the production of DSBs a few hours after incubation. These breaks trigger the phosphorylation of H2AX proteins. We showed that the DNA-PK kinase activity, essential for NHEJ, is altered by the presence of uranium. The presence of uranium in cells disturbs but does not inhibit the repair rate of DSBs. Such a result suggests an impact of uranium upon the reparability of DSBs and the potential activation of alternative DSBs repair pathway leading to the propagation of possible misrepaired DSBs. In parallel, we performed a transmission electron microscopy analysis of cells exposed to uranium and were able to localize internalized uranium using an Energy Dispersive X-ray microanalyser. We observed the formation of precipitates in lysosome-like vesicles for 250 µM of uranium in the medium. The appearance of these precipitates is concomitant with the decrease of the number of DSBs per cell. This process might be a part of a defence system whose role in counteracting cytotoxicity calls for further dedicated research.


Asunto(s)
ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Uranio/toxicidad , Animales , Línea Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Fibroblastos/ultraestructura , Pruebas de Mutagenicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA