Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain ; 145(7): 2332-2346, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35134125

RESUMEN

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.


Asunto(s)
Epilepsia Tipo Ausencia , Hipoglucemia , Proteínas Quinasas Activadas por AMP/metabolismo , Epilepsia Tipo Ausencia/metabolismo , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Receptores de GABA-B/metabolismo , Convulsiones , Tálamo
2.
Epilepsia ; 55(2): 203-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24299204

RESUMEN

OBJECTIVE: To develop a constitutively active K(+) leak channel using TREK-1 (TWIK-related potassium channel 1; TREK-M) that is resistant to compensatory down-regulation by second messenger cascades, and to validate the ability of TREK-M to silence hyperactive neurons using cultured hippocampal neurons. To test if adenoassociated viral (AAV) delivery of TREK-M could reduce the duration of status epilepticus and reduce neuronal death induced by lithium-pilocarpine administration. METHODS: Molecular cloning techniques were used to engineer novel vectors to deliver TREK-M via plasmids, lentivirus, and AAV using a cytomegalovirus (CMV)-enhanced GABRA4 promoter. Electrophysiology was used to characterize the activity and regulation of TREK-M in human embryonic kidney (HEK-293) cells, and the ability to reduce spontaneous activity in cultured hippocampal neurons. Adult male rats were injected bilaterally with self-complementary AAV particles composed of serotype 5 capsid into the hippocampus and entorhinal cortex. Lithium-pilocarpine was used to induce status epilepticus. Seizures were monitored using continuous video-electroencephalography (EEG) monitoring. Neuronal death was measured using Fluoro-Jade C staining of paraformaldehyde-fixed brain slices. RESULTS: TREK-M inhibited neuronal firing by hyperpolarizing the resting membrane potential and decreasing input resistance. AAV delivery of TREK-M decreased the duration of status epilepticus by 50%. Concomitantly it reduced neuronal death in areas targeted by the AAV injection. SIGNIFICANCE: These findings demonstrate that TREK-M can silence hyperexcitable neurons in the brain of epileptic rats and treat acute seizures. This study paves the way for an alternative gene therapy treatment of status epilepticus, and provides the rationale for studies of AAV-TREK-M's effect on spontaneous seizures in chronic models of temporal lobe epilepsy.


Asunto(s)
Técnicas de Transferencia de Gen , Neuronas/patología , Canales de Potasio de Dominio Poro en Tándem/genética , Estado Epiléptico/genética , Estado Epiléptico/prevención & control , Animales , Muerte Celular/genética , Polaridad Celular/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Humanos , Masculino , Inhibición Neural/genética , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/administración & dosificación , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/patología
3.
Assay Drug Dev Technol ; 5(2): 191-203, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17477828

RESUMEN

T-type Ca(2+) channels encoded by voltage-gated Ca(2+) channel (Ca(v)) 3.1, 3.2, and 3.3 genes play important physiological roles and serve as therapeutic targets for neurological and cardiovascular disorders. Currently there is no selective T-channel blocker. To screen for such a blocker, we developed three stable cell lines expressing human recombinant Ca(v)3.1, 3.2, or 3.3 channels and then examined their usefulness in high throughput screens. All three cell lines displayed an increase in intracellular Ca(2+) in response to changes in extracellular Ca(2+) as detected with Ca(2+)-sensitive dyes using a fluorometric imaging plate reader (FLIPR [Molecular Devices, Sunnyvale, CA] or FlexStation [Molecular Devices]). The signal-to-noise ratio was 2-4. Co-expression of Ca(v)3.2 with a mouse leak K(+) channel, which by virtue of being open at rest hyperpolarizes the cell membrane, blocked the fluorescent signal. Co-addition of KCl to these cells induced a Ca(2+) signal that was similar to that observed in the cell line expressing Ca(v)3.2 alone. These results confirm that the detection of intracellular Ca(2+) increase in cells expressing Ca(v)3.2 alone results from Ca(2+) entry through channels that are open at the resting membrane potential of each cell line (i.e., window currents). Testing known drugs on Ca(v)3 channels showed that block could be reliably detected using the FlexStation assay, FLIPR assay, or voltage clamp recordings using the IonWorks HT system (Molecular Devices). These results support the use of the FLIPR window current assay for primary drug screening and high throughput patch recordings for secondary screening of novel T-channel blockers.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Algoritmos , Calcio/metabolismo , Canales de Calcio Tipo T/genética , Línea Celular , Colorantes , Interpretación Estadística de Datos , Evaluación Preclínica de Medicamentos , Fluorometría , Humanos , Mibefradil/farmacología , Técnicas de Placa-Clamp , Canales de Potasio/efectos de los fármacos , Control de Calidad , Reproducibilidad de los Resultados , Temperatura
4.
J Physiol ; 574(Pt 2): 415-30, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16644797

RESUMEN

Although T-type Ca(2+) channels in the thalamus play a crucial role in determining neuronal excitability and are involved in sensory processing and pathophysiology of epilepsy, little is known about the molecular mechanisms involved in their regulation. Here, we report that reducing agents, including endogenous sulfur-containing amino acid l-cysteine, selectively enhance native T-type currents in reticular thalamic (nRT) neurons and recombinant Ca(V)3.2 (alpha1H) currents, but not native and recombinant Ca(V)3.1 (alpha1G)- and Ca(V)3.3 (alpha1I)-based currents. Consistent with this data, T-type currents of nRT neurons from transgenic mice lacking Ca(V)3.2 channel expression were not modulated by reducing agents. In contrast, oxidizing agents inhibited all native and recombinant T-type currents non-selectively. Thus, our findings directly demonstrate that Ca(V)3.2 channels are the main molecular substrate for redox regulation of neuronal T-type channels. In addition, because thalamic T-type channels generate low-threshold Ca(2+) spikes that directly correlate with burst firing in these neurons, differential redox regulation of these channels may have an important function in controlling cellular excitability in physiological and pathological conditions and fine-tuning of the flow of sensory information into the central nervous system.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Tálamo/fisiología , Animales , Calcio/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Cisteína/farmacología , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Oxidación-Reducción , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley
5.
J Biol Chem ; 281(8): 4823-30, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16377633

RESUMEN

Molecular cloning studies have revealed that heterogeneity of T-type Ca2+ currents in native tissues arises from the three isoforms of Ca(v)3 channels: Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3. From pharmacological analysis of the recombinant T-type channels, low concentrations (<50 microM) of nickel were found to selectively block the Ca(v)3.2 over the other isoforms. To date, however, the structural element(s) responsible for the nickel block on the Ca(v)3.2 T-type Ca2+ channel remain unknown. Thus, we constructed chimeric channels between the nickel-sensitive Ca(v)3.2 and the nickel-insensitive Ca(v)3.1 to localize the region interacting with nickel. Systematic assaying of serial chimeras suggests that the region preceding domain I S4 of Ca(v)3.2 contributes to nickel block. Point mutations of potential nickel-interacting sites revealed that H191Q in the S3-S4 loop of domain I significantly attenuated the nickel block of Ca(v)3.2, mimicking the nickel-insensitive blocking potency of Ca(v)3.1. These findings indicate that His-191 in the S3-S4 loop is a critical residue conferring nickel block to Ca(v)3.2 and reveal a novel role for the S3-S4 loop to control ion permeation through T-type Ca2+ channels.


Asunto(s)
Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/fisiología , Níquel/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio Tipo T/química , Clonación Molecular , Electrofisiología , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Iones , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Níquel/química , Oocitos/metabolismo , Plásmidos/metabolismo , Mutación Puntual , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Complementario/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Xenopus
6.
Biochem Pharmacol ; 69(5): 841-54, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15710361

RESUMEN

There is evidence that nifedipine (Nif) - a dihydropyridine (DHP) Ca(2+)-channel antagonist mostly known for its L-type-specific action--is capable of blocking low voltage-activated (LVA or T-type) Ca(2+) channels as well. However, the discrimination by Nif of either various endogenous T-channel subtypes, evident from functional studies, or cloned Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 T-channel alpha 1 subunits have not been determined. Here, we investigated the effects of Nif on currents induced by Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 expression in Xenopus oocytes or HEK-293 cells (I(alpha 1G), I(alpha 1H) and I(alpha 1I), respectively) and two kinetically distinct, "fast" and "slow", LVA currents in thalamic neurons (I(LVA,f) and I(LVA,s)). At voltages of the maximums of respective currents the drug most potently blocked I(alpha 1H) (IC(50)=5 microM, max block 41%) followed by I(alpha 1G) (IC(50)=109 microM, 23%) and I(alpha 1I) (IC(50)=243 microM, 47%). The mechanism of blockade included interaction with Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 open and inactivated states. Nif blocked thalamic I(LVA,f) and I(LVA,s) with nearly equal potency (IC(50)=22 microM and 28 microM, respectively), but with different maximal inhibition (81% and 51%, respectively). We conclude that Ca(v)3.2 is the most sensitive to Nif, and that quantitative characteristics of drug action on T-type Ca(2+) channels depend on cellular system they are expressed in. Some common features in the voltage- and state-dependence of Nif action on endogenous and recombinant currents together with previous data on T-channel alpha 1 subunits mRNA expression patterns in the thalamus point to Ca(v)3.1 and Ca(v)3.3 as the major contributors to thalamic I(LVA,f) and I(LVA,s), respectively.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Nifedipino/farmacología , Animales , Canales de Calcio Tipo T/clasificación , Canales de Calcio Tipo T/fisiología , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Subunidades de Proteína , Ratas , Proteínas Recombinantes/efectos de los fármacos , Tálamo/fisiología , Xenopus
7.
Br J Pharmacol ; 144(1): 59-70, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15644869

RESUMEN

Reticular thalamocortical neurons express a slowly inactivating T-type Ca(2+) current that is quite similar to that recorded from recombinant Ca(v)3.3b (alpha1Ib) channels. These neurons also express abundant Ca(v)3.3 mRNA, suggesting that it underlies the native current. Here, we test this hypothesis by comparing the anesthetic sensitivities of recombinant Ca(v)3.3b channels stably expressed in HEK 293 cells to native T channels in reticular thalamic neurons (nRT) from brain slices of young rats. Barbiturates completely blocked both Ca(v)3.3 and nRT currents, with pentobarbital being about twice more potent in blocking Ca(v)3.3 currents. Isoflurane had about the same potency in blocking Ca(v)3.3 and nRT currents, but enflurane, etomidate, propofol, and ethanol exhibited 2-4 fold higher potency in blocking nRT vs Ca(v)3.3 currents. Nitrous oxide (N(2)O; laughing gas) blocked completely nRT currents with IC(50) of 20%, but did not significantly affect Ca(v)3.3 currents at four-fold higher concentrations. In addition, we observed that in lower concentration, N(2)O reversibly increased nRT but not Ca(v)3.3 currents. In conclusion, contrasting anesthetic sensitivities of Ca(v)3.3 and nRT T-type Ca(2+) channels strongly suggest that different molecular structures of Ca(2+) channels give rise to slowly inactivating T-type Ca(2+) currents. Furthermore, effects of volatile anesthetics and ethanol on slowly inactivating T-type Ca(2+) channel variants may contribute to the clinical effects of these agents.


Asunto(s)
Anestésicos Generales/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/fisiología , Neuronas Aferentes/efectos de los fármacos , Óxido Nitroso/farmacología , Tálamo/fisiología , Barbitúricos/farmacología , Canales de Calcio Tipo T/clasificación , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Enflurano/farmacología , Etanol/farmacología , Etomidato/farmacología , Humanos , Concentración 50 Inhibidora , Isoflurano/farmacología , Cinética , Neuronas Aferentes/fisiología , Técnicas de Placa-Clamp , Pentobarbital/farmacología , Propofol/farmacología , Proteínas Recombinantes/efectos de los fármacos
8.
J Neurophysiol ; 92(6): 3399-407, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15254077

RESUMEN

Low-voltage-activated T-type (Cav3) Ca2+ channels produce low-threshold spikes that trigger burst firing in many neurons. The CACNA1I gene encodes the Cav3.3 isoform, which activates and inactivates much more slowly than the other Cav3 channels. These distinctive kinetic features, along with its brain-region-specific expression, suggest that Cav3.3 channels endow neurons with the ability to generate long-lasting bursts of firing. The human CACNA1I gene contains two regions of alternative splicing: variable inclusion of exon 9 and an alternative acceptor site within exon 33, which leads to deletion of 13 amino acids (Delta33). The goal of this study is to determine the functional consequences of these variations in the full-length channel. The cDNA encoding these regions were cloned using RT-PCR from human brain, and currents were recorded by whole cell patch clamp. Introduction of the Delta33 deletion slowed the rate of channel opening. Addition of exon 9 had little effect on kinetics, whereas its addition to Delta33 channels unexpectedly slowed both activation and inactivation kinetics. Modeling of neuronal firing showed that exon 9 or Delta33 alone reduced burst firing, whereas the combination enhanced firing. The major conclusions of this study are that the intracellular regions after repeats I and IV play a role in channel gating, that their effects are interdependent, suggesting a direct interaction, and that splice variation of Cav3.3 channels provides a mechanism for fine-tuning the latency and duration of low-threshold spikes.


Asunto(s)
Potenciales de Acción/fisiología , Empalme Alternativo/fisiología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/fisiología , Secuencia de Aminoácidos , Canales de Calcio Tipo T/química , Células Cultivadas , ADN Complementario , Exones , Humanos , Activación del Canal Iónico/genética , Riñón/citología , Proteínas de Transporte de Membrana , Modelos Neurológicos , Datos de Secuencia Molecular , Neuronas/fisiología , Técnicas de Placa-Clamp , Relación Estructura-Actividad , Tálamo/citología , Tálamo/fisiología , Transfección
9.
Biophys J ; 83(1): 229-41, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12080115

RESUMEN

The full-length human Ca(v)3.3 (alpha(1I)) T-type channel was cloned, and found to be longer than previously reported. Comparison of the cDNA sequence to the human genomic sequence indicates the presence of an additional 4-kb exon that adds 214 amino acids to the carboxyl terminus and encodes the 3' untranslated region. The electrophysiological properties of the full-length channel were studied after transient transfection into 293 human embryonic kidney cells using 5 mM Ca(2+) as charge carrier. From a holding potential of -100 mV, step depolarizations elicited inward currents with an apparent threshold of -70 mV, a peak of -30 mV, and reversed at +40 mV. The kinetics of channel activation, inactivation, deactivation, and recovery from inactivation were very similar to those reported previously for rat Ca(v)3.3. Similar voltage-dependent gating and kinetics were found for truncated versions of human Ca(v)3.3, which lack either 118 or 288 of the 490 amino acids that compose the carboxyl terminus. A major difference between these constructs was that the full-length isoform generated twofold more current. These results suggest that sequences in the distal portion of Ca(v)3.3 play a role in channel expression. Studies on the voltage-dependence of activation revealed that a fraction of channels did not gate as low voltage-activated channels, requiring stronger depolarizations to open. A strong depolarizing prepulse (+100 mV, 200 ms) increased the fraction of channels that gated at low voltages. In contrast, human Ca(v)3.3 isoforms with shorter carboxyl termini were less affected by a prepulse. Therefore, Ca(v)3.3 is similar to high voltage-activated Ca(2+) channels in that depolarizing prepulses can regulate their activity, and their carboxy termini play a role in modulating channel activity.


Asunto(s)
Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/genética , Secuencia de Aminoácidos , Animales , Fenómenos Biofísicos , Biofisica , Encéfalo/metabolismo , Línea Celular , Clonación Molecular , ADN Complementario/metabolismo , Electrofisiología , Biblioteca de Genes , Humanos , Cinética , Proteínas de Transporte de Membrana , Modelos Genéticos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Ratas , Factores de Tiempo , Transfección
10.
J Physiol ; 540(Pt 1): 3-14, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11927664

RESUMEN

In several types of neurons, firing is an intrinsic property produced by specific classes of ion channels. Low-voltage-activated T-type calcium channels (T-channels), which activate with small membrane depolarizations, can generate burst firing and pacemaker activity. Here we have investigated the specific contribution to neuronal excitability of cloned human T-channel subunits. Using HEK-293 cells transiently transfected with the human alpha(1G) (Ca(V)3.1), alpha(1H) (Ca(V)3.2) and alpha(1I) (Ca(V)3.3) subunits, we describe significant differences among these isotypes in their biophysical properties, which are highlighted in action potential clamp studies. Firing activities occurring in cerebellar Purkinje neurons and in thalamocortical relay neurons used as voltage clamp waveforms revealed that alpha(1G) channels and, to a lesser extent, alpha(1H) channels produced large and transient currents, while currents related to alpha(1I) channels exhibited facilitation and produced a sustained calcium entry associated with the depolarizing after-potential interval. Using simulations of reticular and relay thalamic neuron activities, we show that alpha(1I) currents contributed to sustained electrical activities, while alpha(1G) and alpha(1H) currents generated short burst firing. Modelling experiments with the NEURON model further revealed that the alpha(1G) channel and alpha(1I) channel parameters best accounted for T-channel activities described in thalamocortical relay neurons and in reticular neurons, respectively. Altogether, the data provide evidence for a role of alpha(1I) channel in pacemaker activity and further demonstrate that each T-channel pore-forming subunit displays specific gating properties that account for its unique contribution to neuronal firing.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Células de Purkinje/fisiología , Potenciales de Acción/fisiología , Canales de Calcio Tipo T/genética , Línea Celular , Corteza Cerebral/citología , Clonación Molecular , Simulación por Computador , Humanos , Riñón/citología , Modelos Neurológicos , Vías Nerviosas , Técnicas de Placa-Clamp , Células de Purkinje/citología , Tálamo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA