Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081324

RESUMEN

Iron is crucial to satisfy several mitochondrial functions including energy metabolism and oxidative phosphorylation. Patients affected by Myelodysplastic Syndromes (MDS) and acute myeloid leukemia (AML) are frequently characterized by iron overload (IOL), due to continuous red blood cell (RBC) transfusions. This event impacts the overall survival (OS) and it is associated with increased mortality in lower-risk MDS patients. Accordingly, the oral iron chelator Deferasirox (DFX) has been reported to improve the OS and delay leukemic transformation. However, the molecular players and the biological mechanisms laying behind remain currently mostly undefined. The aim of this study has been to investigate the potential anti-leukemic effect of DFX, by functionally and molecularly analyzing its effects in three different leukemia cell lines, harboring or not p53 mutations, and in human primary cells derived from 15 MDS/AML patients. Our findings indicated that DFX can lead to apoptosis, impairment of cell growth only in a context of IOL, and can induce a significant alteration of mitochondria network, with a sharp reduction in mitochondrial activity. Moreover, through a remarkable reduction of Murine Double Minute 2 (MDM2), known to regulate the stability of p53 and p73 proteins, we observed an enhancement of p53 transcriptional activity after DFX. Interestingly, this iron depletion-triggered signaling is enabled by p73, in the absence of p53, or in the presence of a p53 mutant form. In conclusion, we propose a mechanism by which the increased p53 family transcriptional activity and protein stability could explain the potential benefits of iron chelation therapy in terms of improving OS and delaying leukemic transformation.


Asunto(s)
Deferasirox/farmacología , Quelantes del Hierro/farmacología , Leucemia Mieloide Aguda/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Hierro/metabolismo , Mitocondrias/efectos de los fármacos , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
2.
Mol Biotechnol ; 59(9-10): 425-434, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28801830

RESUMEN

Enamel is the covering tissue of teeth, made of regularly arranged hydroxyapatite crystals deposited on an organic matrix composed of 90% amelogenin that is completely degraded at the end of the enamel formation process. Amelogenin has a biomineralizing activity, forming nanoparticles or nanoribbons that guide hydroxyapatite deposit, and regenerative functions in bone and vascular tissue and in wound healing. Biotechnological products containing amelogenin seem to facilitate these processes. Here, we describe the production of human amelogenin in plants by transient transformation of Nicotiana benthamiana with constructs carrying synthetic genes with optimized human or plant codons. Both genes yielded approximately 500 µg of total amelogenin per gram of fresh leaf tissue. Two purification procedures based on affinity chromatography or on intrinsic solubility properties of the protein were followed, yielding from 12 to 150 µg of amelogenin per gram of fresh leaf tissue, respectively, at different purity. The identity of the plant-made human amelogenin was confirmed by MALDI-TOF-MS analysis of peptides generated following chymotrypsin digestion. Using dynamic light scattering, we showed that plant extracts made in acetic acid containing human amelogenin have a bimodal distribution of agglomerates, with hydrodynamic diameters of 22.8 ± 3.8 and 389.5 ± 86.6 nm. To the best of our knowledge, this is the first report of expression of human amelogenin in plants, offering the possibility to use this plant-made protein for nanotechnological applications.


Asunto(s)
Amelogenina/genética , Clonación Molecular , Nanotecnología/métodos , Nicotiana/genética , Amelogenina/biosíntesis , Amelogenina/aislamiento & purificación , Secuencia de Aminoácidos/genética , Regulación de la Expresión Génica de las Plantas/genética , Humanos , Espectrometría de Masas , Péptidos/química , Péptidos/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Mol Cell Biochem ; 434(1-2): 51-60, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28432552

RESUMEN

Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.


Asunto(s)
Anabolizantes/farmacología , Biomarcadores/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Inmovilización , Nandrolona/administración & dosificación , Estrés Oxidativo , Estrés Fisiológico , Aldehídos/sangre , Aldehídos/metabolismo , Aminoácidos/biosíntesis , Animales , Biomarcadores/sangre , Western Blotting , Electroforesis en Gel Bidimensional , Metabolismo Energético , Masculino , Malondialdehído/sangre , Malondialdehído/metabolismo , Espectrometría de Masas , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA