Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mar Environ Res ; 150: 104762, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31394415

RESUMEN

The explosion of the Deepwater Horizon (DWH) oil exploration platform on April 20, 2010 began a catastrophic leak of approximately 640 million liters crude oil into the northern Gulf of Mexico (GOM), affecting more than 2100 km of coastline, including wetlands and estuaries that provide habitat and nursery for many aquatic species. Estuaries of the GOM are dynamic environments, with constant fluctuations in salinity and dissolved oxygen, including large hypoxic zones during summer months. Spawning fish in northern GOM estuaries following the DWH incident were at significant risk of oil exposure, and adverse environmental conditions at the time of exposure, such as hypoxia and low salinity, could have exacerbated developmental effects in the offspring. The present study investigated the effects of F0 parental oil exposure in different environmental scenarios on development of F1 sheepshead minnow (SHM) offspring. Adult SHM were exposed to the high-energy water accommodated fraction (HEWAF) of crude oil in three environmental scenarios: normoxic (NORM), hypoxic (HYP), and hypoxic with low salinity (HYP-LS). Parental HEWAF exposure in the NORM scenario resulted in developmental effects in F1 offspring, including altered heart rate, decreased length at hatch, and impaired prey capture. Co-exposure of F0 SHM to HEWAF and adverse environmental conditions altered HEWAF effects on F1 heart rate, hatch rate, prey capture, and survival. Time to hatch was not significantly impacted by parental HEWAF in any environmental scenario. The present study demonstrates that parental exposure to HEWAF results in developmental changes in F1 embryos, and co-exposure to adverse environmental conditions altered the effects for several developmental endpoints. These data suggest that SHM exposed to oil in estuaries experiencing hypoxia or low salinity may produce offspring with worsened outcomes. These developmental effects, in addition to previously reported reproductive effects in adult fish, could lead to long-term population level impacts for SHM.


Asunto(s)
Peces Killi , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Estuarios , Femenino , Golfo de México , Peces Killi/crecimiento & desarrollo , Masculino , Exposición Materna , Exposición Paterna , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
2.
Ecotoxicol Environ Saf ; 181: 106-113, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176244

RESUMEN

Oil spills have polluted the marine environment for decades and continue to be a major source of polycyclic aromatic hydrocarbons (PAHs) to marine ecosystems around the globe, for example during the 2010 Deepwater Horizon spill. Although the toxicity of PAHs to fish has been well studied, their effects combined with abiotic stressors are poorly understood. The goal of this study was to describe the combined impacts of crude oil and environmental stressors on fish larvae, a sensitive life stage. Gulf killifish (Fundulus grandis) larvae (<24 h post-hatch) were exposed for 48 h to high energy water accommodated fractions (HEWAF; total PAHs 0-125 ppb) of Macondo oil from the Deepwater Horizon spill under different combinations of environmental conditions (dissolved oxygen 2, 6 ppm; temperature 20, 25, 30 °C; salinity 3, 10, 30 ppt). Even under optimal environmental conditions (25 °C, 10 ppt, 6 ppm) larval survival and development were negatively affected by PAHs, starting with the lowest concentration tested (∼15 ppb). Hypoxia and high temperature each increased the adverse effects of HEWAF on development and mortality. In contrast, salinity had little effect on any of the endpoints measured. Importantly, expression of the detoxifying gene cyp1a was highly induced in PAH-exposed larvae under normoxic conditions, but not under hypoxic conditions, potentially explaining the enhanced toxicity observed under hypoxia. This work highlights the importance of considering how suboptimal environmental conditions can exacerbate the effects of pollution on fish early life stages.


Asunto(s)
Fundulidae/crecimiento & desarrollo , Contaminación por Petróleo , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Hipoxia/veterinaria , Larva/efectos de los fármacos , Contaminación por Petróleo/efectos adversos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Salinidad , Temperatura
3.
Toxicol Appl Pharmacol ; 376: 58-69, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31078588

RESUMEN

Marine metal pollution is an emerging concern for human, animal, and ecosystem health. We considered metal pollution in the Sea of Cortez, which is a relatively isolated sea rich in biodiversity. Here there are potentially significant anthropogenic inputs of pollution from agriculture and metal mining. We considered the levels of 23 heavy metals and selenium in seven distinct cetacean species found in the area. Our efforts considered two different periods of time: 1999 and 2016/17. We considered the metal levels in relation to (1) all species together across years, (2) differences between suborders Odontoceti and Mysticeti, (3) each species individually across years, and (4) gender differences for each of these comparisons. We further compared metal levels found in sperm whale skin samples collected during these voyages to a previous voyage in 1999, to assess changes in metal levels over a longer timescale. The metals Mg, Fe, Al, and Zn were found at the highest concentrations across all species and all years. For sperm whales, we observed decreased metal levels from 1999 to 2016/2017, except for iron (Fe), nickel (Ni), and chromium (Cr), which either increased or did not change during this time period. These results indicate a recent change in the metal input to the Sea of Cortez, which may indicate a decreased concern for human, animal, and ecosystem health for some metals, but raises concern for the genotoxic metals Cr and Ni. This work was supported by NIEHS grant ES016893 (J.P.W.) and numerous donors to the Wise Laboratory.


Asunto(s)
Cetáceos/metabolismo , Salud Ambiental/métodos , Metales Pesados/análisis , Contaminación Química del Agua/análisis , Animales , Balaenoptera/metabolismo , Femenino , Yubarta/metabolismo , Masculino , Metales Pesados/toxicidad , Océano Pacífico , Selenio/análisis , Selenio/toxicidad , Factores Sexuales , Piel/química , Especificidad de la Especie , Cachalote/metabolismo , Factores de Tiempo , Contaminantes Químicos del Agua , Contaminación Química del Agua/efectos adversos , Calderón/metabolismo
4.
Aquat Toxicol ; 212: 175-185, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31129413

RESUMEN

Estuaries of the northern Gulf of Mexico are dynamic environments, with fluctuations in salinity and dissolved oxygen, including areas of seasonal hypoxia. Fish that reside and reproduce in these estuaries, including sheepshead minnow (Cyprinodon variegatus; SHM), were at significant risk of oil exposure following the Deepwater Horizon oil spill. It is poorly understood how differences in environmental conditions during oil exposure impact its toxicity. The present study investigated the effects of crude oil high-energy water accommodated fraction (HEWAF) on SHM reproduction in three environmental scenarios (normoxic, hypoxic, and hypoxic with low salinity) to determine if differences in salinity (brackish vs low salinity) and dissolved oxygen (normoxia vs hypoxia) could exacerbate the effects of HEWAF-derived polycyclic aromatic hydrocarbons (PAHs). We observed that HEWAF exposure significantly increased liver somatic index of SHM compared to control, but this effect was not exacerbated by hypoxia or low salinity. HEWAF exposure also significantly decreased egg production and egg fertilization rate, but only in the hypoxic and hypoxic with low salinity scenarios. A significant correlation existed between body burdens of PAHs and reproductive endpoints, providing substantial evidence that oil exposure reduced reproductive capacity in SHM, across a range of environmental conditions. These data suggest that oil spill risk assessments that fail to consider other environmental stressors (i.e. hypoxia and salinity) may be underestimating risk.


Asunto(s)
Hipoxia/patología , Peces Killi/fisiología , Contaminación por Petróleo , Petróleo/toxicidad , Reproducción/efectos de los fármacos , Salinidad , Animales , Golfo de México , Hígado/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
5.
Environ Toxicol Chem ; 38(3): 638-649, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30556163

RESUMEN

The Deepwater Horizon oil spill resulted in the release of over 640 million L of crude oil into the Gulf of Mexico, affecting over 2000 km of shoreline, including estuaries that serve as important habitats and nurseries for aquatic species. Cyprinodon variegatus (sheepshead minnow) are small-bodied fish that inhabit northern Gulf of Mexico estuaries, are easily adaptable to laboratory conditions, and are commonly used in toxicological assessment studies. The purpose of the present study was to determine the somatic, reproductive, and developmental effects of an environmentally relevant polycyclic aromatic hydrocarbon (PAH) mixture, the oil high-energy water accommodated fraction (HEWAF), on experimentally exposed sheepshead minnow (F0 ) as well as 2 generations of offspring (F1 and F2 ) without additional exposure. The F0 generation exposed to HEWAF had increased liver somatic indices, altered egg production, and decreased fertilization. Several developmental endpoints in the F1 were altered by F0 HEWAF exposure. As adults, low HEWAF-exposed F1 females demonstrated decreased weight and length. Both the F1 and F2 generations derived from high HEWAF-exposed F0 had deficits in prey capture compared to control F1 and F2 , respectively. Correlations between endpoints and tissue PAHs provide evidence that the physiological effects observed were associated with hydrocarbon exposure. These data demonstrate that PAHs were capable of causing physiological changes in exposed adult sheepshead minnow and transgenerational effects in unexposed offspring, both of which could have population-level consequences. Environ Toxicol Chem 2019;38:638-649. © 2018 SETAC.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Exposición a Riesgos Ambientales , Femenino , Peces Killi/anatomía & histología , Peces Killi/crecimiento & desarrollo , Peces Killi/fisiología , Hígado/efectos de los fármacos , Masculino , Petróleo/toxicidad , Contaminación por Petróleo , Reproducción/efectos de los fármacos
6.
Aquat Toxicol ; 203: 10-18, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30064050

RESUMEN

Given their particle feeding behavior, sessile nature, and abundance in coastal zones, bivalves are at significant risk for exposure to oil and oil dispersant following environmental disasters like the Deepwater Horizon oil spill. However, the effects of oil combined with oil dispersants on the health of oysters are not well studied. Therefore, eastern oysters (Crassostrea virginica) were exposed in vivo to Corexit® 9500, crude oil (high-energy water accommodated fraction; HEWAF), and a Corexit®/oil mixture (chemically-enhanced water accommodated fraction; CEWAF) to evaluate potential toxic effects on immunological (phagocytosis and respiratory burst), physiological (feeding rate), and histological endpoints. Phagocytosis was significantly increased following CEWAF exposure only. Respiratory burst was significantly decreased following Corexit® exposure, but significantly increased following exposure to the highest concentration of CEWAF. Oyster feeding rates were significantly decreased following exposure to Corexit®, HEWAF, and CEWAF, and were most sensitive to CEWAF exposure. These modulations of important immunological and physiological functions could result in serious health outcomes for oysters, such as increased parasitism and decreased growth. Our experiments showed that subtle, sub-lethal effects occurred following acute in vivo exposure to Corexit®, HEWAF, and CEWAF, though oysters were not equally sensitive to the three components. Data from this study can be used for more accurate risk assessment concerning the impact of oil and Corexit® on the health of oysters.


Asunto(s)
Crassostrea/efectos de los fármacos , Lípidos/toxicidad , Petróleo/toxicidad , Pruebas de Toxicidad , Animales , Fraccionamiento Químico , Crassostrea/inmunología , Ácido Dioctil Sulfosuccínico/metabolismo , Granulocitos/citología , Granulocitos/efectos de los fármacos , Larva/efectos de los fármacos , Contaminación por Petróleo/análisis , Fagocitosis/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Agua/química , Contaminantes Químicos del Agua/toxicidad
7.
Environ Toxicol Chem ; 37(7): 1916-1925, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29663533

RESUMEN

In the present study, we examined how sensitivity to oil changes in combination with environmental stressors in Fundulus grandis embryos. We exposed embryos (<24 h post fertilization) to a range of high-energy water accommodated fraction (HEWAF) concentrations (0-50 parts per billion [ppb] total polycyclic aromatic hydrocarbons [PAHs]) made from Macondo crude oil in conjunction with various environmental conditions (temperature: 20 and 30 °C; salinity: 3, 7, and 30 practical salinity units [PSU]; and dissolved oxygen: 2 and 6 mg/L). Endpoints included mortality, hatching rates, and expression of cytochrome p450 1a and 1c (cyp1a, cyp1c) in hatched larvae. There was 100% mortality for all fish under the 2 parts per million (ppm) dissolved oxygen regimes. For the 6 mg/L dissolved oxygen treatments, mortality and median lethal time (LT50) were generally higher in the 30 °C treatments versus the 20 °C treatments. Oil increased mortality in fish exposed to the highest concentration in the 20-3-6 (°C-PSU-mg/L), 25-7-6, and 30-30-6 conditions. Hatching was driven by environmental conditions, with oil exposure having a significant impact on hatching in only the 25-7-6 and 30-30-6 groups at the greatest HEWAF exposure. Expression of cyp1a was up-regulated in most treatment groups versus the controls, with cyp1c expression exhibiting a similar pattern. These data suggest interactive effects among temperature, salinity, and PAHs, highlighting a need to further assess the effects of oil exposure under various environmental conditions. Environ Toxicol Chem 2018;37:1916-1925. © 2018 SETAC.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Fundulidae/embriología , Contaminación por Petróleo , Petróleo/toxicidad , Estrés Fisiológico , Animales , Familia 1 del Citocromo P450/genética , Familia 1 del Citocromo P450/metabolismo , Embrión no Mamífero/metabolismo , Fundulidae/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
8.
Neurochem Res ; 42(12): 3490-3503, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28918494

RESUMEN

Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.


Asunto(s)
Betaína/farmacología , Transporte Biológico/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Presión Osmótica/efectos de los fármacos , Taurina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Concentración Osmolar
9.
J Agric Food Chem ; 65(24): 5049-5055, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28581738

RESUMEN

Furocoumarins are a class of photoactive compounds found in several plant species and may be responsible for the observed association between consumption of citrus products and the risk of skin cancer. Furocoumarin contents of several foods have been reported previously, but no comprehensive database of furocoumarin content of foods is currently available. Therefore, this study aimed to determine the distribution of furocoumarins in popularly consumed foods in the U.S. Samples of three varieties of each of 29 foods known or suspected to contain furocoumarins were purchased, prepared for analysis using a solid phase extraction method, and analyzed using UPLC-MS/MS for the presence of seven major furocoumarins. Most foods measured contained more than one furocoumarin, and some contained all seven of the furocoumarins examined. Total furocoumarin concentration was greatest in fresh parsley (23215 ng/g), grapefruits (21858 ng/g), lime juice (14580 ng/g), grapefruit juice (95341 ng/g), and limes (9151 ng/g). Bergamottin was found in the greatest proportion of foods sampled (23 of 29), followed by bergapten (19 of 29) and 6'7'-dihydroxybergamottin (16 of 29). These measurements will enable more accurate estimation of dietary furocoumarin exposure and will strengthen future epidemiological work investigating the relationships between furocoumarin intake and health outcomes.


Asunto(s)
Jugos de Frutas y Vegetales/análisis , Frutas/química , Furocumarinas/química , Furocumarinas/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Verduras/química , Cromatografía Líquida de Alta Presión/métodos , Análisis de los Alimentos , Humanos , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Estados Unidos
10.
Artículo en Inglés | MEDLINE | ID: mdl-26456815

RESUMEN

Cadmium is a non-essential, toxic metal found accumulated in the organs of stranded cetaceans. Currently, there is no baseline cadmium concentration reported in a free-ranging, pelagic cetacean. The aim was to determine cadmium concentrations in the skin of free-ranging sperm whales (n=340) collected from 16 regions around the world during the voyage of the Odyssey (2000-2005) considering region, gender, and age in males. Cadmium was detected in 81% of skin biopsies with a mean of 0.3±0.04µg/g ww (0.02 to 12.4µg/g ww). These concentrations were higher than reported in literature in toothed whale skin (0.002-0.1µg/g ww). Concentrations by region were significantly different (p<0.0001) with the highest mean in Maldives and the Sea of Cortez (0.8 and 0.6µg/g ww, respectively). There was no significant difference in cadmium concentration by gender (p=0.42). Cadmium is known to have a long biological half-life, and cadmium concentrations in males were significantly higher in adults with a mean of 0.3µg/g ww compared to subadults with 0.2µg/g ww (p=0.03). Selenium, an element that binds to cadmium inhibiting its toxicity, had a moderately positive correlation with cadmium (r=0.41). Mercury, a toxic metal that positively correlates with cadmium in cetacean tissue, had a weakly positive relationship (r=0.20). The regional baselines reported in this study may be used to develop residue criteria for prediction of toxicological risk in sperm whale skin. Additionally, this study shows the extent of cadmium exposure in a pelagic cetacean that has global distribution.


Asunto(s)
Cadmio/metabolismo , Piel/metabolismo , Cachalote/metabolismo , Animales , Monitoreo del Ambiente/métodos , Femenino , Semivida , Intoxicación por Metales Pesados , Masculino , Mercurio/metabolismo , Metales Pesados/metabolismo , Intoxicación/metabolismo , Selenio/metabolismo , Contaminantes Químicos del Agua/metabolismo
11.
Ecotoxicology ; 24(5): 1102-11, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25794559

RESUMEN

Monitoring internal crude oil exposure can assist the understanding of associated risks and impacts, as well as the effectiveness of restoration efforts. Under the auspices of a long-term monitoring program of Tundra Peregrine Falcons (Falco peregrinus tundrius) at Assateague (Maryland) and South Padre Islands (Texas), we measured the 16 parent (unsubstituted) polycyclic aromatic hydrocarbons (PAHs), priority pollutants identified by the United States Environmental Protection Agency and components of crude oil, in peripheral blood cells of migrating Peregrine Falcons from 2009 to 2011. The study was designed to assess the spatial and temporal trends of crude oil exposure associated with the 2010 Deepwater Horizon (DWH) oil spill which started 20 April 2010 and was capped on 15 July of that year. Basal PAH blood distributions were determined from pre-DWH oil spill (2009) and unaffected reference area sampling. This sentinel species, a predator of shorebirds and seabirds during migration, was potentially exposed to residual oil from the spill in the northern Gulf of Mexico. Results demonstrate an increased incidence (frequency of PAH detection and blood concentrations) of PAH contamination in 2010 fall migrants sampled along the Texas Gulf Coast, declining to near basal levels in 2011. Kaplan-Meier peak mean ∑PAH blood concentration estimates varied with age (Juveniles-16.28 ± 1.25, Adults-5.41 ± 1.10 ng/g, wet weight) and PAHs detected, likely attributed to the discussed Tundra Peregrine natural history traits. Increased incidence of fluorene, pyrene and anthracene, with the presence of alkylated PAHs in peregrine blood suggests an additional crude oil source after DWH oil spill. The analyses of PAHs in Peregrine Falcon blood provide a convenient repeatable method, in conjunction with ongoing banding efforts, to monitoring crude oil contamination in this avian predator.


Asunto(s)
Falconiformes/metabolismo , Contaminación por Petróleo/análisis , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Factores de Edad , Migración Animal , Animales , Monitoreo del Ambiente/métodos , Falconiformes/sangre , Golfo de México
12.
Environ Sci Technol ; 48(5): 2997-3006, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552566

RESUMEN

Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster.


Asunto(s)
Cromo/análisis , Mutágenos/análisis , Níquel/análisis , Contaminación por Petróleo , Contaminantes Químicos del Agua/análisis , Ballenas , Animales , Desastres , Monitoreo del Ambiente , Golfo de México , Petróleo/análisis , Contaminación por Petróleo/análisis
13.
Sci Total Environ ; 450-451: 59-71, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23467177

RESUMEN

Pollution of the ocean by mercury (Hg) is a global concern. Hg persists, bioaccumulates and is toxic putting high trophic consumers at risk. The sperm whale (Physeter macrocephalus), is a sentinel of ocean health due to its wide distribution, longevity and high trophic level. Our aim was to survey Hg concentrations worldwide in the skin of free-ranging sperm whales considering region, gender and age. Samples were collected from 343 whales in 17 regions during the voyage of the research vessel, Odyssey, between 1999 and 2005. Skin was analyzed for total Hg and detected in all but three samples with a global mean of 2.5±0.1 µg g(-1) ranging from 0.1 to 16.0 µg g(-1). The Mediterranean Sea had the highest regional mean with 6.1 µg g(-1) followed by Australia with 3.5 µg g(-1). Considering gender, females and males did not have significantly different global Hg concentrations. The variation among regions for females was significantly different with highest levels in the Mediterranean and lowest in Sri Lanka; however, males were not significantly different among regions. Considering age in males, adults and subadults did not have significantly different Hg concentrations, and were not significantly different among regions. The toxic effects of these Hg concentrations are uncertain. Selenium (Se), an essential element, antagonizes Hg at equimolar amounts. We measured total Se concentrations and found detectable levels in all samples with a global mean of 33.1±1.1 µg g(-1) ranging from 2.5 to 179 µg g(-1). Se concentrations were found to be several fold higher than Hg concentrations with the average Se:Hg molar ratio being 59:1 and no correlation between the two elements. It is possible Hg is being detoxified in the skin by another mechanism. These data provide the first global analysis of Hg and Se concentrations in a free-ranging cetacean.


Asunto(s)
Monitoreo del Ambiente/métodos , Mercurio/análisis , Selenio/análisis , Piel/metabolismo , Cachalote/metabolismo , Contaminantes Químicos del Agua/análisis , Animales , Femenino , Masculino , Mercurio/farmacocinética , Océanos y Mares , Selenio/farmacocinética , Piel/química , Espectrofotometría Atómica , Cachalote/crecimiento & desarrollo , Contaminantes Químicos del Agua/farmacocinética
14.
Aquat Toxicol ; 66(4): 419-25, 2004 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15168949

RESUMEN

A lobster die-off reduced the 1999 fall landings in western Long Island Sound by up to more then 99%. The die-off corresponded in time with the application of pesticides for the control of mosquitoes that carried West Nile virus, a new emerging disease in North America at the time. In order to determine the possible implication of pesticide application as a direct cause or contributing factor in the die-off, we studied the effects of experimental exposure to malathion on the health of lobsters. Lobsters were exposed in 20 gallon tanks, and the direct toxicity as well as sub-lethal effects on the immune system were determined. The 96 h LC50 for malathion upon single exposure was 38 microg/l. Malathion degraded rapidly in sea water, with 65-77% lost after 1 day and 83-96% lost after 3 days. Phagocytosis was significantly decreased 3 days after a single exposure to initial water concentrations as low as 5 ppb, when measured water concentrations were as low as 0.55 ppb. Similarly, effects on phagocytosis were observed at 1, 2 and 3 weeks after the initiation of weekly exposures. Cell counts did not differ significantly upon exposure to malathion. Malathion was not detected in muscle and hepatopancreas of exposed lobsters. Evaluation of phagocytosis is a sensitive indicator of subtle sub-lethal effects of malathion, and relatively small concentrations of malathion (6-7 times lower than the LC50) can affect lobster defense mechanisms.


Asunto(s)
Malatión/toxicidad , Nephropidae/efectos de los fármacos , Nephropidae/inmunología , Animales , Hepatopáncreas/efectos de los fármacos , Técnicas Histológicas , Dosificación Letal Mediana , Malatión/metabolismo , Malatión/farmacocinética , Músculo Esquelético/efectos de los fármacos , Nephropidae/metabolismo , Fagocitosis/efectos de los fármacos , Agua de Mar , Factores de Tiempo , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA