Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 51(15): 8701-8712, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28651047

RESUMEN

We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.


Asunto(s)
Cyprinidae/genética , Aguas Residuales , Contaminantes Químicos del Agua/toxicidad , Animales , Monitoreo del Ambiente , Estrona , Femenino , Masculino , Pruebas de Mutagenicidad , Medición de Riesgo
2.
BMC Genomics ; 16: 587, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26251320

RESUMEN

BACKGROUND: A systems toxicology investigation comparing and integrating transcriptomic and proteomic results was conducted to develop holistic effects characterizations for the wildlife bird model, Northern bobwhite (Colinus virginianus) dosed with the explosives degradation product 2-amino-4,6-dinitrotoluene (2A-DNT). A subchronic 60 d toxicology bioassay was leveraged where both sexes were dosed via daily gavage with 0, 3, 14, or 30 mg/kg-d 2A-DNT. Effects on global transcript expression were investigated in liver and kidney tissue using custom microarrays for C. virginianus in both sexes at all doses, while effects on proteome expression were investigated in liver for both sexes and kidney in males, at 30 mg/kg-d. RESULTS: As expected, transcript expression was not directly indicative of protein expression in response to 2A-DNT. However, a high degree of correspondence was observed among gene and protein expression when investigating higher-order functional responses including statistically enriched gene networks and canonical pathways, especially when connected to toxicological outcomes of 2A-DNT exposure. Analysis of networks statistically enriched for both transcripts and proteins demonstrated common responses including inhibition of programmed cell death and arrest of cell cycle in liver tissues at 2A-DNT doses that caused liver necrosis and death in females. Additionally, both transcript and protein expression in liver tissue was indicative of induced phase I and II xenobiotic metabolism potentially as a mechanism to detoxify and excrete 2A-DNT. Nuclear signaling assays, transcript expression and protein expression each implicated peroxisome proliferator-activated receptor (PPAR) nuclear signaling as a primary molecular target in the 2A-DNT exposure with significant downstream enrichment of PPAR-regulated pathways including lipid metabolic pathways and gluconeogenesis suggesting impaired bioenergetic potential. CONCLUSION: Although the differential expression of transcripts and proteins was largely unique, the consensus of functional pathways and gene networks enriched among transcriptomic and proteomic datasets provided the identification of many critical metabolic functions underlying 2A-DNT toxicity as well as impaired PPAR signaling, a key molecular initiating event known to be affected in di- and trinitrotoluene exposures.


Asunto(s)
Compuestos de Anilina/toxicidad , Colinus/metabolismo , Hígado/efectos de los fármacos , Animales , Bioensayo/métodos , Relación Dosis-Respuesta a Droga , Sustancias Explosivas/toxicidad , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteómica/métodos
3.
Environ Sci Technol ; 42(16): 6250-6, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18767695

RESUMEN

Ecotoxicogenomic approaches to environmental monitoring provide holistic information, offer insight into modes of action, and help to assess the causal agents and potential toxicity of effluents beyond the traditional end points of death and reproduction. Recent investigations of toxicant exposure indicate dose-dependent changes are a key issue in interpreting genomic studies. Additionally, there is interest in developing methods to integrate gene expression studies in environmental monitoring and regulation, and the No Observed Transcriptional Effect Level (NOTEL) has been proposed as a means for screening effluents and unknown chemicals fortoxicity. However, computational methods to determine the NOTEL have yet to be established. Therefore, we examined effects on gene expression in Daphnia magna following exposure to Cu, Cd, and Zn over a range of concentrations including a tolerated, a sublethal, and a nearly acutely toxic concentration. Each concentration produced a distinct gene expression profile. We observed differential expression of a very few genes at tolerated concentrations that were distinct from the expression profiles observed at concentrations associated with toxicity. These results suggest that gene expression analysis may offer a strategy for distinguishing toxic and nontoxic concentrations of metals in the environment and provide support for a NOTEL for metal exposure in D. magna. Mechanistic insights could be inferred from the concentration-dependent gene expression profiles including metal specific effects on disparate metabolic processes such as digestion, immune response, development and reproduction, and less specific stress responses at higher concentrations.


Asunto(s)
Daphnia/metabolismo , Perfilación de la Expresión Génica , Animales , Cadmio/farmacología , Cobre/farmacología , Daphnia/efectos de los fármacos , Daphnia/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Contaminantes Químicos del Agua/farmacología , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA