Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuron ; 110(24): 4176-4193.e10, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36240769

RESUMEN

Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.


Asunto(s)
Motivación , Corteza Motora , Ratones , Animales , Objetivos , Aprendizaje/fisiología , Corteza Motora/fisiología , Percepción , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
2.
Nat Commun ; 11(1): 3342, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620835

RESUMEN

Subdivisions of mouse whisker somatosensory thalamus project to cortex in a region-specific and layer-specific manner. However, a clear anatomical dissection of these pathways and their functional properties during whisker sensation is lacking. Here, we use anterograde trans-synaptic viral vectors to identify three specific thalamic subpopulations based on their connectivity with brainstem. The principal trigeminal nucleus innervates ventral posterior medial thalamus, which conveys whisker-selective tactile information to layer 4 primary somatosensory cortex that is highly sensitive to self-initiated movements. The spinal trigeminal nucleus innervates a rostral part of the posterior medial (POm) thalamus, signaling whisker-selective sensory information, as well as decision-related information during a goal-directed behavior, to layer 4 secondary somatosensory cortex. A caudal part of the POm, which apparently does not receive brainstem input, innervates layer 1 and 5A, responding with little whisker selectivity, but showing decision-related modulation. Our results suggest the existence of complementary segregated information streams to somatosensory cortices.


Asunto(s)
Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Tacto/fisiología , Vibrisas/fisiología , Animales , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Corteza Cerebral/citología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Corteza Somatosensorial/citología , Transmisión Sináptica , Tálamo/citología , Vibrisas/inervación
3.
Neuron ; 103(6): 1034-1043.e5, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31402199

RESUMEN

The neural circuits underlying goal-directed sensorimotor transformations in the mammalian brain are incompletely understood. Here, we compared the role of primary tongue-jaw motor cortex (tjM1) and primary whisker sensory cortex (wS1) in head-restrained mice trained to lick a reward spout in response to whisker deflection. Two-photon microscopy combined with microprisms allowed imaging of neuronal network activity across cortical layers in transgenic mice expressing a genetically encoded calcium indicator. Early-phase activity in wS1 encoded the whisker sensory stimulus and was necessary for detection of whisker stimuli. Activity in tjM1 encoded licking direction during task execution and was necessary for contralateral licking. Pre-stimulus activity in tjM1, but not wS1, was predictive of lick direction and contributed causally to small preparatory jaw movements. Our data reveal a shift in coding scheme from wS1 to tjM1, consistent with the hypothesis that these areas represent cortical start and end points for this goal-directed sensorimotor transformation.


Asunto(s)
Corteza Motora/fisiología , Red Nerviosa/fisiología , Corteza Somatosensorial/fisiología , Animales , Mapeo Encefálico , Calcio/metabolismo , Maxilares/inervación , Aprendizaje , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Corteza Motora/metabolismo , Red Nerviosa/metabolismo , Optogenética , Recompensa , Corteza Somatosensorial/metabolismo , Lengua/inervación , Vibrisas/inervación
4.
Neuron ; 92(6): 1368-1382, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009277

RESUMEN

Frontal cortex plays a central role in the control of voluntary movements, which are typically guided by sensory input. Here, we investigate the function of mouse whisker primary motor cortex (wM1), a frontal region defined by dense innervation from whisker primary somatosensory cortex (wS1). Optogenetic stimulation of wM1 evokes rhythmic whisker protraction (whisking), whereas optogenetic inactivation of wM1 suppresses initiation of whisking. Whole-cell membrane potential recordings and silicon probe recordings of action potentials reveal layer-specific neuronal activity in wM1 at movement initiation, and encoding of fast and slow parameters of movements during whisking. Interestingly, optogenetic inactivation of wS1 caused hyperpolarization and reduced firing in wM1, together with reduced whisking. Optogenetic stimulation of wS1 drove activity in wM1 with complex dynamics, as well as evoking long-latency, wM1-dependent whisking. Our results advance understanding of a well-defined frontal region and point to an important role for sensory input in controlling motor cortex.


Asunto(s)
Corteza Motora/fisiología , Movimiento/fisiología , Vibrisas/inervación , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratones , Optogenética , Técnicas de Placa-Clamp , Periodicidad , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
5.
Cell Rep ; 13(4): 647-656, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26489463

RESUMEN

The thalamus transmits sensory information to the neocortex and receives neocortical, subcortical, and neuromodulatory inputs. Despite its obvious importance, surprisingly little is known about thalamic function in awake animals. Here, using intracellular and extracellular recordings in awake head-restrained mice, we investigate membrane potential dynamics and action potential firing in the two major thalamic nuclei related to whisker sensation, the ventral posterior medial nucleus (VPM) and the posterior medial group (Pom), which receive distinct inputs from brainstem and neocortex. We find heterogeneous state-dependent dynamics in both nuclei, with an overall increase in action potential firing during active states. Whisking increased putative lemniscal and corticothalamic excitatory inputs onto VPM and Pom neurons, respectively. A subpopulation of VPM cells fired spikes phase-locked to the whisking cycle during free whisking, and these cells may therefore signal whisker position. Our results suggest differential processing of whisking comparing thalamic nuclei at both sub- and supra-threshold levels.


Asunto(s)
Potenciales de la Membrana/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Potenciales de Acción/fisiología , Animales , Electroencefalografía , Electromiografía , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/fisiología , Neuronas/citología , Neuronas/fisiología , Tálamo/citología
6.
Eur J Neurosci ; 41(3): 354-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25476605

RESUMEN

Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons.


Asunto(s)
Actividad Motora/fisiología , Corteza Motora/anatomía & histología , Corteza Somatosensorial/anatomía & histología , Vibrisas/inervación , Animales , Axones/fisiología , Vías Eferentes/anatomía & histología , Vías Eferentes/fisiología , Femenino , Lateralidad Funcional/fisiología , Ácido Glutámico/metabolismo , Masculino , Ratones Transgénicos , Corteza Motora/fisiología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Inhibición Neural/fisiología , Periodicidad , Formación Reticular/anatomía & histología , Formación Reticular/fisiología , Corteza Somatosensorial/fisiología , Núcleo Espinal del Trigémino/anatomía & histología , Núcleo Espinal del Trigémino/fisiología , Vibrisas/fisiología
7.
Nat Neurosci ; 15(3): 370-2, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22267163

RESUMEN

We investigated the impact of thalamus on ongoing cortical activity in the awake, behaving mouse. We demonstrate that the desynchronized cortical state during active behavior is driven by a centrally generated increase in thalamic action potential firing, which can also be mimicked by optogenetic stimulation of the thalamus. The thalamus therefore is key in controlling cortical states.


Asunto(s)
Sincronización Cortical/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Animales , Channelrhodopsins , Desnervación , Estimulación Eléctrica/métodos , Análisis de Fourier , Ratones , Ratones Transgénicos , Neuronas/fisiología , Corteza Somatosensorial/citología , Tálamo/citología , Vibrisas/inervación , Vigilia
8.
Eur J Neurosci ; 31(12): 2221-33, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20550566

RESUMEN

The primary somatosensory barrel cortex processes tactile vibrissae information, allowing rodents to actively perceive spatial and textural features of their immediate surroundings. Each whisker on the snout is individually represented in the neocortex by an anatomically identifiable 'barrel' specified by the segregated termination zones of thalamocortical axons of the ventroposterior medial nucleus, which provide the primary sensory input to the neocortex. The sensory information is subsequently processed within local synaptically connected neocortical microcircuits, which have begun to be investigated in quantitative detail. In addition to these local synaptic microcircuits, the excitatory pyramidal neurons of the barrel cortex send and receive long-range glutamatergic axonal projections to and from a wide variety of specific brain regions. Much less is known about these long-range connections and their contribution to sensory processing. Here, we review current knowledge of the long-range axonal input and output of the mouse primary somatosensory barrel cortex. Prominent reciprocal projections are found between primary somatosensory cortex and secondary somatosensory cortex, motor cortex, perirhinal cortex and thalamus. Primary somatosensory barrel cortex also projects strongly to striatum, thalamic reticular nucleus, zona incerta, anterior pretectal nucleus, superior colliculus, pons, red nucleus and spinal trigeminal brain stem nuclei. These long-range connections of the barrel cortex with other specific cortical and subcortical brain regions are likely to play a crucial role in sensorimotor integration, sensory perception and associative learning.


Asunto(s)
Vías Nerviosas/anatomía & histología , Corteza Somatosensorial/anatomía & histología , Animales , Mapeo Encefálico , Humanos , Ratones , Vías Nerviosas/fisiología , Corteza Somatosensorial/fisiología , Coloración y Etiquetado/métodos , Tálamo/anatomía & histología , Tálamo/fisiología , Tacto/fisiología , Vibrisas/anatomía & histología , Vibrisas/fisiología
9.
Neuron ; 48(5): 710-1, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16337906

RESUMEN

In this issue of Neuron, MacLean et al. report that thalamic stimulation can evoke spatiotemporal sequences of neocortical neuronal activity similar to spontaneous UP states. This could suggest that the patterns of activity associated with the processing of sensory input might be replayed during spontaneous activity.


Asunto(s)
Neocórtex/fisiología , Neuronas/fisiología , Tálamo/fisiología , Animales , Estimulación Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA