Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 2): 130147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354942

RESUMEN

Green polymeric foams are an important research topic for sustainable development. In this study, a natural multifunctional flame-retardant additive based on food waste was developed and evaluated for its ability to replace the commercial additives tricresyl phosphate (TCP) and trioctyl phosphate (TOP) in a polylactide/poly(butylene adipate-co-terephthalate) (PLA/PBAT) foam. A series of blend foams with additives were prepared by melt extrusion. According to the results, the blend foam with 20 phr of TCP showed the best combination of impact toughness and flame retardancy. TCP, however, poses health and environmental risks. Therefore, natural flame retardants (NFRs) were used to partially replace the commercial flame retardant (CFR). A combination of TCP and soybean residue (SB) produced an impact toughened and flame-retardant blend foam. When compared to the neat PLA/PBAT foam, the impact toughness of the best sample was increased by about 256 %. The optimal foam showed excellent flame resistance with a V-0 UL-94 rating and a high LOI value (31.8 %). SB has the potential to partially replace TCP as flame retardant and could be used in a broad range of PLA/PBAT foam applications.


Asunto(s)
Alquenos , Retardadores de Llama , Ácidos Ftálicos , Eliminación de Residuos , Fósforo , Alimento Perdido y Desperdiciado , Alimentos , Poliésteres , Adipatos , Poli A
2.
Int J Biol Macromol ; 220: 1480-1492, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126808

RESUMEN

Microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (OPEFB) waste by integrated chemical treatments of delignification, bleaching, and acidic hydrolysis. The obtained MCC (OPMC) and tricresyl phosphate (TCP) were used as additives for polylactide (PLA) composites. The influences of OPMC and TCP contents, separately and in combination, were evaluated on the properties of the composites. Characterization studies confirmed the successful extraction of OPMC from OPEFB waste. With regard to the properties of the PLA composite, the appropriate content of OPMC should be 5 phr. The good distribution of OPMC in the polymer matrix changed the failure behavior of the composite from brittle to ductile. All the PLA composites with TCP and OPMC showed flame inhibition and retarded ignition. The synergistic effect of TCP and OPMC resulted in outstanding improvement of impact strength and flame retardancy of composites. The impact toughness of PT10M5 increased to about 218.4 % and 72.3 % that of neat PLA and PT0M5, respectively. Moreover, PT10M5 achieved V-0 rating with high LOI (38.5 %). All these characteristics promise extended applications for PLA composite in bio, circular, and green (BCG) economies and electronics industries.


Asunto(s)
Frutas , Tritolilfosfatos , Celulosa , Frutas/química , Aceite de Palma , Poliésteres/análisis , Polímeros/química , Tritolilfosfatos/análisis
3.
Waste Manag ; 127: 101-111, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33932851

RESUMEN

The petroleum-based plastics, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP), and the biodegradable plastic, polylactide (PLA) were processed by thermal and catalytic pyrolysis to investigate their suitability as feedstock for chemical recycling. The influence of pyrolysis temperature (400-600 °C) and catalyst (zeolite, spent FCC, and MgO catalyst) on the pyrolysis liquid composition and yield was studied. The studied petroleum-based plastics had similar decomposition temperature ranges but produced their highest pyrolysis yields at different temperatures. Pyrolysis liquids from thermal degradation of HDPE and LDPE consisted high yield of waxes but those of PP and PLA consisted of both waxes and liquid oil. Catalysts affected not only the pyrolysis yield, but also the proportions of liquid oil and wax in pyrolysis liquids. Alkenes, alkanes, and aromatics were the main compounds in the pyrolysis liquids. Spent FCC catalyst reduced the production of waxes and increased the production of gasoline-range hydrocarbons and aromatics. MgO catalyst led to high coke formation from polyolefins and PLA. Lactic acid, lactide and propanoic acid were examples of valuable chemicals recovered from the pyrolysis of PLA. Lactide was the main product (up to 79%) of catalytic pyrolysis with zeolite at 400 °C. Spent FCC catalyst produced mostly propanoic acid at 400 °C but at 600 °C, L-lactic acid became the most abundant compound.


Asunto(s)
Plásticos Biodegradables , Petróleo , Catálisis , Plásticos , Pirólisis , Reciclaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA