Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Nanomedicine ; 16: 5879-5894, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471354

RESUMEN

PURPOSE: The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. METHODS: In this study, aqueous leaf extract of Solanum mammosum, a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diode array detector (HPLC/DAD). Finally, a microbial analysis was conducted using Escherichia coli and Bacillus sp. RESULTS: The average size of nanoparticles was 5.2 ± 2.3 nm measured by high-resolution transmission electron microscopy (HR-TEM). The antioxidant activity measured by ORAC-FL in the extract and nanoparticles were 3944 ± 112 and 637.5 ± 14.8 µM ET/g of sample, respectively. Cellular antioxidant activity was 14.7 ± 0.2 for the aqueous extract and 12.5 ± 0.2 for the nanoparticles. The electrochemical index (EI) was 402 µA/V for the extract and 324 µA/V for the nanoparticles. Total polyphenolic content was 826.6 ± 20.9 and 139.7 ± 20.9 mg EGA/100 g of sample. Gallic acid was the main polyphenolic compound present in the leaf extract. Microbiological analysis revealed that although leaf extract was not toxic for Escherichia coli and Bacillus sp., minor toxic activity for AgNPs was detected for both strains. CONCLUSION: It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.


Asunto(s)
Nanopartículas del Metal , Solanum , Antioxidantes , Fluoresceína , Capacidad de Absorbancia de Radicales de Oxígeno , Extractos Vegetales , Especies Reactivas de Oxígeno , Plata , Agua
2.
ACS Chem Biol ; 16(9): 1701-1708, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34427431

RESUMEN

In this study, we provide experimental (Protein Data Bank (PDB) inspection) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of the involvement of charge assisted chalcogen bonding (ChB) interactions in the recognition and folding mechanisms of S-adenosylmethionine (SAM) riboswitches. Concretely, an initial PDB search revealed several examples where ChBs between S-adenosyl methionine (SAM)/adenosyl selenomethionine (EEM) molecules and uracil (U) bases belonging to RNA take place. While these interactions are usually described as a merely Coulombic attraction between the positively charged S/Se group and RNA, theoretical calculations indicated that the σ holes of S and Se are involved. Moreover, computational models shed light on the strength and directionality properties of the interaction, which was also further characterized from a charge-density perspective using Bader's "Atoms in Molecules" (AIM) theory, Non-Covalent Interaction plot (NCIplot) visual index, and Natural Bonding Orbital (NBO) analyses. As far as our knowledge extends, this is the first time that ChBs in SAM-RNA complexes have been systematically analyzed, and we believe the results might be useful for scientists working in the field of RNA engineering and chemical biology as well as to increase the visibility of the interaction among the biological community.


Asunto(s)
Calcógenos/química , S-Adenosilmetionina/química , Selenio/química , Azufre/química , Bases de Datos de Proteínas , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , ARN/metabolismo , Riboswitch , Selenometionina/química , Electricidad Estática , Termodinámica , Uracilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA