Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 106(3): 2167-2180, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36567245

RESUMEN

Most nutrition models and some nutritionists view ration formulation as accounting transactions to match nutrient supplies with nutrient requirements. However, diet and stage of lactation interact to alter the partitioning of nutrients toward milk and body reserves, which, in turn, alters requirements. Fermentation and digestion of diet components determine feeding behavior and the temporal pattern and profile of absorbed nutrients. The pattern and profile, in turn, alter hormonal signals, tissue responsiveness to hormones, and mammary metabolism to affect milk synthesis and energy partitioning differently depending on the physiological state of the cow. In the fresh period (first 2 to 3 wk postpartum), plasma insulin concentration and insulin sensitivity of tissues are low, so absorbed nutrients and body reserves are partitioned toward milk synthesis. As lactation progresses, insulin secretion and sensitivity increase, favoring deposition instead of mobilization of body reserves. High-starch diets increase ruminal propionate production, the flow of gluconeogenic precursors to the liver, and blood insulin concentrations. During early lactation, the glucose produced will preferentially be used by the mammary gland for milk production. As lactation progresses and milk yield decreases, glucose will increasingly stimulate repletion of body reserves. Diets with less starch and more digestible fiber increase ruminal production of acetate relative to propionate and, because acetate is less insulinogenic than propionate, these diets can minimize body weight gain. High dietary starch concentration and fermentability can also induce milk fat depression by increasing the production of biohydrogenation intermediates that inhibit milk fat synthesis and thus favor energy partitioning away from the mammary gland. Supplemental fatty acids also impact energy partitioning by affecting insulin concentration and insulin sensitivity of tissues. Depending on profile, physiological state, and interactions with other nutrients, supplemental fatty acids might increase milk yield at the expense of body reserves or partition energy to body reserves at the expense of milk yield. Supplemental protein or AA also can increase milk production but there is little evidence that dietary protein directly alters whole-body partitioning. Understanding the biology of these interactions can help nutritionists better formulate diets for cows at various stages of lactation.


Asunto(s)
Enfermedades de los Bovinos , Resistencia a la Insulina , Insulinas , Femenino , Bovinos , Animales , Propionatos/metabolismo , Lactancia/fisiología , Leche/metabolismo , Dieta/veterinaria , Ácidos Grasos/metabolismo , Almidón/metabolismo , Nutrientes , Glucosa/metabolismo , Rumen/fisiología , Enfermedades de los Bovinos/metabolismo
2.
J Dairy Sci ; 98(5): 3323-34, 2015 05.
Artículo en Inglés | MEDLINE | ID: mdl-25726097

RESUMEN

Forty-eight multiparous cows were used in a randomized complete block design experiment with a 2×2 factorial arrangement of treatments to determine the interaction between a highly saturated free FA supplement (SFFA) and dietary forage NDF (fNDF) content on energy balance and metabolic responses in postpartum cows. Treatment diets were offered from 1 to 29 d postpartum and contained 20 or 26% fNDF and 0 or 2% SFFA (Energy Booster 100; 96.1% FA: 46.2% C18:0, and 37.0% C16:0). Overall, low fNDF versus high fNDF and 2% SFFA versus 0% SFFA increased digestible energy intake (DEI; 67.5 vs. 62.2 Mcal/d and 68.1 vs. 61.6 Mcal/d, respectively). The low fNDF diet with SFFA increased energy balance compared with the other treatments early during the treatment period, but treatment differences diminished over time. Overall, low fNDF versus high fNDF diets and 2% SFFA versus 0% SFFA improved energy balance (-13.0 vs. -16.3 Mcal/d and -12.0 vs. -17.3, respectively) decreasing efficiency of utilization of DEI for milk (milk NEL/DEI; 0.575 vs. 0.634 and 0.565 vs. 0.643). Low fNDF diets increased plasma insulin (0.308 vs. 0.137 µg/mL) and glucose concentrations (50.5 vs. 45.7mg/dL) and decreased plasma nonesterified FA (606 vs. 917µEq/L) and ß-hydroxybutyrate (9.29 vs. 16.5mg/dL) concentrations and liver triglyceride content. Compared with 0% SFFA, 2% SFFA decreased plasma nonesterified FA concentration during the first week postpartum (706 vs. 943µEq/L) and tended to decrease plasma nonesterified FA overall throughout the treatment period, but did not affect liver triglyceride content. During a glucose tolerance test, 2% SFFA increased plasma insulin concentration more in the low fNDF diet (84.5 vs. 44.6µIU/mL) than in the high fNDF diet (40.4 vs. 38.0µIU/mL). After glucose infusion, 2% SFFA increased insulin area under the curve by 64% when included in the low fNDF diet, but only by 5.2% when included in the high fNDF diet. Even though 2% SFFA did not affect weekly plasma insulin concentration, it increased plasma insulin baseline concentration before the tolerance tests. Supplementation of 2% SFFA and low fNDF diets increased DEI and improved energy balance, but decreased apparent efficiency of utilization of DEI for milk production. Fat supplementation affected energy partitioning, increasing energy balance and decreasing body condition score loss, especially in the lower fNDF diet. The decrease in body condition score loss observed was likely related to an increase in plasma insulin concentration. Feeding SFFA in a low fNDF diet during the first 29 d postpartum might have primed the cows to limit fat mobilization at the expense of milk.


Asunto(s)
Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Ingestión de Energía , Metabolismo Energético , Ácidos Grasos/administración & dosificación , Periodo Posparto , Ácido 3-Hidroxibutírico/sangre , Animales , Glucemia/metabolismo , Bovinos , Ácidos Grasos no Esterificados/sangre , Femenino , Insulina/sangre , Lactancia , Leche/química , Leche/metabolismo , Triglicéridos/metabolismo
3.
J Dairy Sci ; 98(5): 3309-22, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25726102

RESUMEN

Forty-eight multiparous cows were used in a randomized complete block design experiment with a 2×2 factorial arrangement of treatments to determine the interaction between a highly saturated free FA supplement (SFFA) and dietary forage neutral detergent fiber (fNDF) content on production responses and nutrient digestibility of dairy cows in the postpartum period. Treatment diets were offered from 1 to 29d postpartum (postpartum period; PP) and contained 20 or 26% fNDF (50:50 corn silage:alfalfa silage and hay, dry matter basis) and 0 or 2% SFFA [Energy Booster 100 (Milk Specialties Global, Eden Prairie, MN); 96.1% FA: 46.2% C18:0 and 37.0% C16:0]. From 30 to 71d postpartum (carryover period), a common diet (~23% fNDF, 0% SFFA) was offered to all cows to evaluate carryover effects of the treatment diets early in lactation. During the PP, higher fNDF decreased dry matter intake (DMI) by 2.0 kg/d, whereas SFFA supplementation increased it by 1.4kg/d. In addition, high fNDF with 0% SFFA decreased DMI compared with the other diets and this difference increased throughout the PP. Treatments did not affect 3.5% fat-corrected milk yield during the PP but did during the carryover period when SFFA supplementation decreased 3.5% fat-corrected milk yield for the low-fNDF diet (51.1 vs. 58.7kg/d), but not for the high-fNDF diet (58.5 vs. 58.0kg/d). During the PP, lower fNDF and SFFA supplementation decreased body condition score loss. A tendency for an interaction between fNDF and SFFA indicated that low fNDF with 2% SFFA decreased body condition score loss compared with the other diets (-0.49 vs. -0.89). During the PP, lower fNDF and 2% SFFA supplementation decreased feed efficiency (3.5% fat-corrected milk/DMI) by 0.30 and 0.23 units, respectively. The low-fNDF diet with 2% SFFA decreased feed efficiency compared with other diets early in the PP, but this difference decreased over time. Supplementation of SFFA in the PP favored energy partitioning to body reserves and limited DMI depression for the high-fNDF diet, which might allow higher-fNDF diets to be fed to cows in the PP. However, SFFA supplemented in the low-fNDF diet during the PP affected production negatively in the carryover period. Dietary fNDF and SFFA interacted, affecting performance in the PP with carryover effects when cows were fed a common diet in early lactation.


Asunto(s)
Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Ácidos Grasos/administración & dosificación , Ensilaje/análisis , Animales , Peso Corporal , Bovinos , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Femenino , Lactancia , Medicago sativa , Leche/química , Leche/metabolismo , Periodo Posparto , Zea mays
4.
J Dairy Sci ; 98(3): 1938-49, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25529423

RESUMEN

Effects of stearic acid supplementation on feed intake and metabolic and production responses of dairy cows with a wide range of milk production (32.2 to 64.4 kg/d) were evaluated in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (142±55 d in milk) were assigned randomly within level of milk yield to treatment sequence. Treatments were diets supplemented (2% of diet dry matter) with stearic acid (SA; 98% C18:0) or control (soyhulls). The diets were based on corn silage and alfalfa and contained 24.5% forage neutral detergent fiber, 25.1% starch, and 17.3% crude protein. Treatment periods were 21 d with the final 4 d used for data and sample collection. Compared with the control, SA increased dry matter intake (DMI; 26.1 vs. 25.2 kg/d) and milk yield (40.2 vs. 38.5 kg/d). Stearic acid had no effect on the concentration of milk components but increased yields of fat (1.42 vs. 1.35 kg/d), protein (1.19 vs. 1.14 kg/d), and lactose (1.96 vs. 1.87 kg/d). The SA treatment increased 3.5% fat-corrected milk (3.5% FCM; 40.5 vs. 38.6 kg/d) but did not affect feed efficiency (3.5% FCM/DMI, 1.55 vs. 1.53), body weight, or body condition score compared with the control. Linear interactions between treatment and level of milk yield during the covariate period were detected for DMI and yields of milk, fat, protein, lactose, and 3.5% FCM; responses to SA were positively related to milk yield of cows. The SA treatment increased crude protein digestibility (67.4 vs. 65.5%), tended to increase neutral detergent fiber digestibility (43.6 vs. 42.3%), decreased fatty acid (FA) digestibility (56.6 vs. 76.1%), and did not affect organic matter digestibility. Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was only 13.3% for total FA and 8.2% for C18:0 plus cis-9 C18:1. Low estimated digestibility of the SA supplement was at least partly responsible for the low FA yield response. Treatment did not affect plasma insulin, glucagon, glucose, and nonesterified FA concentrations. Results show that stearic acid has the potential to increase DMI and yields of milk and milk components, without affecting conversion of feed to milk, body condition score, or body weight. Moreover, effects on DMI and yields of milk and milk components were more pronounced for higher-yielding cows than for lower-yielding cows.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Lactancia/fisiología , Ácidos Esteáricos/administración & dosificación , Animales , Peso Corporal , Fibras de la Dieta/metabolismo , Suplementos Dietéticos , Digestión , Grasas/análisis , Ácidos Grasos/administración & dosificación , Ácidos Grasos no Esterificados/metabolismo , Femenino , Lactancia/efectos de los fármacos , Lactosa/metabolismo , Medicago sativa/metabolismo , Leche/química , Ensilaje , Zea mays/metabolismo
5.
J Dairy Sci ; 96(11): 7143-7154, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24011949

RESUMEN

The effects of palmitic acid supplementation on feed intake, digestibility, and metabolic and production responses were evaluated in dairy cows with a wide range of milk production (34.5 to 66.2 kg/d) in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (151 ± 66 d in milk) were randomly assigned to treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet DM) with palmitic acid (PA; 99% C16:0) or control (SH; soyhulls). Treatment periods were 21 d, with the final 4 d used for data and sample collection. Immediately before the first treatment period, cows were fed the control diet for 21 d and baseline values were obtained for all variables (covariate period). Milk production measured during the covariate period (preliminary milk yield) was used as covariate. In general, no interactions were detected between treatment and preliminary milk yield for the response variables measured. The PA treatment increased milk fat percentage (3.40 vs. 3.29%) and yields of milk (46.0 vs. 44.9 kg/d), milk fat (1.53 vs. 1.45 kg/d), and 3.5% fat-corrected milk (44.6 vs. 42.9 kg/d), compared with SH. Concentrations and yields of protein and lactose were not affected by treatment. The PA treatment did not affect dry matter (DM) intake or body weight, tended to decrease body condition score (2.93 vs. 2.99), and increased feed efficiency (3.5% fat-corrected milk/DM intake; 1.60 vs. 1.54), compared with SH. The PA treatment increased total-tract digestibility of neutral detergent fiber (39.0 vs.35.7%) and organic matter (67.9 vs. 66.2%), but decreased fatty acid (FA) digestibility (61.2 vs. 71.3%). As total FA intake increased, total FA digestibility decreased (R(2) = 0.51) and total FA absorbed increased (quadratic R(2) = 0.82). Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was 11.7% for total FA and 16.5% for C16:0 plus cis-9 C16:1 FA. The PA treatment increased plasma concentration of nonesterified FA (101 vs. 90.0 µEq/L) and cholecystokinin (19.7 vs. 17.6 pmol/L), and tended to increase plasma concentration of insulin (10.7 vs. 9.57 µ IU/mL). Results show that palmitic acid fed at 2% of diet DM has the potential to increase yields of milk and milk fat, independent of production level without increasing body condition score or body weight. However, a small percentage of the supplemented FA was partitioned to milk.


Asunto(s)
Bovinos/fisiología , Digestión/efectos de los fármacos , Grasas/análisis , Lactancia/efectos de los fármacos , Leche/química , Ácido Palmítico/farmacología , Alimentación Animal/análisis , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Suplementos Dietéticos , Ingestión de Alimentos/efectos de los fármacos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/sangre , Femenino , Glucagón/sangre , Insulina/sangre , Lactosa/análisis , Proteínas de la Leche/análisis , Ácido Palmítico/análisis
6.
J Dairy Sci ; 92(9): 4290-300, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19700689

RESUMEN

Dietary lipid supplements have been extensively evaluated for their effects on mammary tissue mRNA abundance, including the classical lipogenic genes ACACA, SCD, FASN, and the transcription regulators SREBF1, THRSP, and PPARG. Novel gene isoforms with key regulatory roles in triacylglycerol synthesis have been recently identified including LPIN1 and AGPAT6. Transcriptional networks (i.e., genes whose mRNA expression is regulated by a transcription factor or nuclear receptor) coordinate adipogenesis and lipid filling in nonruminant adipose tissue. To investigate whether long-term milk fat depression affects adipogenic networks in subcutaneous adipose tissue, we characterized mRNA expression via quantitative PCR of 20 genes in cows fed saturated and polyunsaturated lipid for 3 wk. Adipose tissue from cows fed a control diet, control with fish (10 g/kg of dry matter) and soybean oil (25 g/kg of dry matter) (FSO), or control with saturated lipid (35 g/kg, EB100; Energy Booster 100, Milk Specialties, Dundee, IL) was biopsied after 21 d of feeding. Milk production did not differ across treatments (averaged 32 kg +/- 2.8 kg/d during the 21 d) but dry matter intake (DMI) decreased in cows fed FSO versus controls (averaged 18 vs. 22 kg/d during the 21 d). Despite the decrease in DMI, FSO resulted in similar energy intake as EB100 during the last 2 wk of the study. Cows fed FSO had a gradual decline in milk fat and energy yield leading to an overall 25% decrease in milk fat yield during the study (averaged 0.90 vs. 1.2 kg/d) compared with control or EB100. Thus, during the 21-d study, FSO led to a gradual increase in intake energy available for adipose tissue deposition. Relative mRNA expression of LPL and SCD as well as ADFP (coding for a protein involved in lipid droplet formation) and LPIN1 (coding for a protein involved in diacylglycerol synthesis/transcriptional regulation) was upregulated with FSO relative to other diets. Expression of the transcription regulator THRSP tended to be greater in cows fed FSO. Overall, results suggest that long-term milk fat depression caused by feeding FSO provided additional energy as well as long-chain fatty acids that, coupled with upregulation of a subset of adipogenic genes in subcutaneous adipose tissue, might have resulted in greater tissue lipid deposition.


Asunto(s)
Bovinos/fisiología , Grasas de la Dieta/metabolismo , Suplementos Dietéticos , Redes Reguladoras de Genes , Lactancia/fisiología , Leche/química , Grasa Subcutánea/metabolismo , Animales , Peso Corporal , Bovinos/genética , Bovinos/metabolismo , Dieta/veterinaria , Grasas/metabolismo , Femenino , Lipogénesis/genética , Leche/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA