Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 116: 154877, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37267692

RESUMEN

BACKGROUND: The flavonoid galangin (3,5,7-trihydroxyflavone) is derived from the root of Alpinia officinarum Hance, an edible and medicinal herb. Galangin has many biological activities, such as anti-inflammatory, anti-microbial, anti-viral, anti-obesogenic, and anti-oxidant effects. However, the anti-tumor mechanism of galangin remains unclear. PURPOSE: To elucidate the anti-tumor mechanisms of galangin in vitro and in vivo. METHODS: MTT, western blotting, immunoprecipitation, RT-PCR, and immunofluorescence assays were used to assess the mechanism of galangin inhibiting PD-L1 expression. The effect of galangin on T cell activity was analyzed in Hep3B/T cell co-cultures. Colony formation, EdU, migration, and invasion assays were performed to explore the effect of galangin on cancer progression and metastasis. Anti-tumor effects of galangin were investigated in a xenograft model. RESULTS: Galangin inhibited PD-L1 expression dose-dependently, which plays a major role in tumor progression. Moreover, galangin blocked STAT3 activation through the JAK1/JAK2/Src signaling pathway and Myc activation through the Ras/RAF/MEK/ERK signaling pathway. Galangin reduced PD-L1 expression by suppressing STAT3 and Myc cooperatively. Galangin increased the killing effect of T cells on tumor cells in Hep3B/T cell co-cultures. Moreover, galangin inhibited tumor cell proliferation, migration, and invasion through PD-L1. In vivo experiments showed that galangin suppressed tumor growth. CONCLUSION: Galangin enhances T-cell activity and inhibits tumor cell proliferation, migration, and invasion through PD-L1. The current study emphasizes the anti-tumor properties of galangin, offering new insights into the development of tumor therapeutics targeting PD-L1.


Asunto(s)
Antígeno B7-H1 , Linfocitos T , Humanos , Antígeno B7-H1/metabolismo , Ligandos , Línea Celular Tumoral , Linfocitos T/metabolismo , Flavonoides/farmacología , Apoptosis , Proliferación Celular , Factor de Transcripción STAT3/metabolismo
2.
J Ethnopharmacol ; 273: 113989, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33677006

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza glabra L., a traditional medicinal, has a history of thousands of years. It is widely used in clinic and has been listed in Chinese Pharmacopoeia. Licochalcone A is a phenolic chalcone compound and a characteristic chalcone of Glycyrrhiza glabra L. It has many pharmacological activities, such as anti-cancer, anti-inflammatory, anti-viral and anti-angiogenic activities. AIM OF THE STUDY: In this study, we explored the anti-tumor activity and potential mechanism of licochalcone A in vitro and in vivo. MATERIALS AND METHODS: In vitro, the mechanism of licochalcone A at inhibiting PD-L1 expression was investigated by molecular docking, western blotting, RT-PCR, flow cytometry, immunofluorescence and immunoprecipitation assays. The co-culture model of T cells and tumor cells was used to detect the activity of cytotoxic T lymphocytes. Colony formation, EdU labelling and apoptosis assays were used to detect changes in cellular proliferation and apoptosis. In vivo, anti-tumor activity of licochalcone A was assessed in a xenograft model of HCT116 cells. RESULTS: In the present study, we found that licochalcone A suppressed the expression of programmed cell death ligand-1 (PD-L1), which plays a key role in regulating the immune response. In addition, licochalcone A inhibited the expressions of p65 and Ras. Immunoprecipitation experiment showed that licochalcone A suppressed the expression of PD-L1 by blocking the interaction between p65 and Ras. In the co-culture model of T cells and tumor cells, licochalcone A pretreatment enhanced the activity of cytotoxic T lymphocytes and restored the ability to kill tumor cells. In addition, we showed that licochalcone A inhibited cell proliferation and promoted cell apoptosis by targeting PD-L1. In vivo xenograft assay confirmed that licochalcone A inhibited the growth of tumor xenografts. CONCLUSION: In general, these results reveal the previously unknown properties of licochalcone A and provide new insights into the anticancer mechanism of this compound.


Asunto(s)
Antígeno B7-H1/metabolismo , Proliferación Celular/efectos de los fármacos , Chalconas/farmacología , Neoplasias del Colon/tratamiento farmacológico , FN-kappa B/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Antígeno B7-H1/genética , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Desnudos , FN-kappa B/genética , Neoplasias Experimentales , Linfocitos T/fisiología , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
3.
ACS Chem Neurosci ; 11(15): 2214-2230, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32609480

RESUMEN

Inflammation is a potential factor in the pathophysiology of depression. A traditional Chinese herbal medicine, arctiin, and its aglycone, arctigenin, are the major bioactive components in Fructus arctii and exhibit neuroprotective and anti-inflammatory activities. Arctigenin has been reported to have antidepressant-like effects. However, the antidepressant-like effects of arctiin, its precursor, remain unknown. In this study, we investigated the antidepressant-like effects of arctiin and its underlying mechanisms by in vivo and in vitro experiments in mice. Our results showed that arctiin significantly attenuated sucrose consumption and increased the immobility time in tail suspension and forced swimming tests. Arctiin decreased neuronal damage in the prefrontal cortex (PFC) of the brain. Arctiin also attenuated the levels of three inflammatory mediators, indoleamine 2,3-dioxygenase, 5-hydroxytryptamine, and dopamine, that were elevated in the PFC or serum of chronic unpredictable mild stress (CUMS)-exposed mice. Arctiin reduced excessive activation of microglia and neuroinflammation by reducing high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)- and tumor necrosis factor-α (TNF-α)/TNF receptor 1 (TNFR1)-mediated nuclear factor-kappa B (NF-κB) activation in the PFC of CUMS-exposed mice and HMGB1- or TNF-α-stimulated primary cultured microglia. These findings demonstrate that arctiin ameliorates depression by inhibiting the activation of microglia and inflammation via the HMGB1/TLR4 and TNF-α/TNFR1 signaling pathways.


Asunto(s)
Proteína HMGB1 , FN-kappa B , Animales , Antidepresivos/farmacología , Depresión , Furanos , Glucósidos , Ratones , Receptores Tipo I de Factores de Necrosis Tumoral , Receptor Toll-Like 4 , Factor de Necrosis Tumoral alfa
4.
Phytomedicine ; 68: 153172, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32004989

RESUMEN

BACKGROUND: Aberrant activation of STAT3 is frequently encountered and promotes survival, cellular proliferation, migration, invasion and angiogenesis in tumor cell. Convallatoxin, triterpenoid ingredient, exhibits anticancer pharmacological properties. PURPOSE: In this work, we investigated the anticancer potential of convallatoxin and explored whether convallatoxin mediates its effect through interference with the STAT3 activation in colorectal cancer cells. METHODS: In vitro, the underlying mechanisms of convallatoxin at inhibiting STAT3 activation were investigated by homology modeling and molecular docking, luciferase reporter assay, MTT assay, RT-PCR, Western blotting and immunofluorescence assays. Changes in cellular proliferation, apoptosis, migration, invasion and angiogenesis were analyzed by EdU labeling assay, colony formation assay, flow cytometry assay, wound-healing assay, matrigel transwell invasion assay and tube formation assays. And in vivo, antitumor activity of convallatoxin was assessed in a murine xenograft model of HCT116 cells. RESULTS: Convallatoxin decreased the viability of colorectal cancer lines. Moreover, convallatoxin reduced the P-STAT3 (T705) via the JAK1, JAK2, and Src pathways and inhibited serine-727 phosphorylation of STAT3 via the PI3K-AKT-mTOR-STAT3 pathways in colorectal cancer cells. Interestingly, we discovered the crosstalk between mTOR and JAK2 in mTOR/STAT3 and JAK/STAT3 pathways, which collaboratively regulated STAT3 activation and convallatoxin play a role in it. Convallatoxin also downregulated the expression of target genes involved cell survival (e.g., Survivin, Bcl-xl, Bcl-2), proliferation (e.g., Cyclin D1), metastasis (e.g., MMP-9), and angiogenesis (e.g., VEGF). Indeed, we found that convallatoxin inhibited tube formation, migration, and invasion of endothelial cells, and inhibited the proliferation. Finally, in vivo observations were confirmed by showing antitumor activity of convallatoxin in a murine xenograft model. CONCLUSION: The result of the current study show that convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer cells and indicate that convallatoxin could be a valuable candidate for the development of colorectal cancer therapeutic.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Estrofantinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Janus Quinasa 2/metabolismo , Masculino , Ratones Desnudos , Simulación del Acoplamiento Molecular , Neovascularización Patológica/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Transcripción STAT3/química , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Estrofantinas/química , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int Immunol ; 15(9): 1081-7, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12917260

RESUMEN

To investigate the role of the Toll-like receptor (TLR) family in host defense against Toxoplasma gondii, we infected TLR2-, TLR4- and MyD88-deficient mice with the avirulent cyst-forming Fukaya strain of T. gondii. All TLR2- and MyD88-deficient mice died within 8 days, whereas all TLR4-deficient and wild-type mice survived after i.p. infection with a high dose of T. gondii. Peritoneal macrophages from T. gondii-infected TLR2- and MyD88-deficient mice did not produce any detectable levels of NO. T. gondii loads in the brain tissues of TLR2- and MyD88-deficient mice were higher than in those of TLR4-deficient and wild-type mice. Furthermore, high levels of IFN-gamma and IL-12 were produced in peritoneal exudate cells (PEC) of TLR4-deficient and wild-type mice after infection, but low levels of cytokines were produced in PEC of TLR2- and MyD88-deficient mice. On the other hand, high levels of IL-4 and IL-10 were produced in PEC of TLR2- and MyD88-deficient mice after infection, but low levels of cytokines were produced in PEC of TLR4-deficient and wild-type mice. The most remarkable histological changes with infiltration of inflammatory cells were observed in lungs of TLR2-deficient mice infected with T. gondii, where severe interstitial pneumonia occurred and abundant T. gondii were found.


Asunto(s)
Arginina/análogos & derivados , Citocinas/biosíntesis , Glicoproteínas de Membrana/inmunología , Receptores de Superficie Celular/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Diferenciación/inmunología , Arginina/farmacología , Pulmón/inmunología , Pulmón/parasitología , Pulmón/patología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Glicoproteínas de Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide , Óxido Nítrico/biosíntesis , Receptores de Superficie Celular/deficiencia , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Th2/inmunología , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptores Toll-Like , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/parasitología , Toxoplasmosis Animal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA