Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 223(2): 751-765, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30920667

RESUMEN

In the natural pesticides known as pyrethrins, which are esters produced in flowers of Tanacetum cinerariifolium (Asteraceae), the monoterpenoid acyl moiety is pyrethric acid or chrysanthemic acid. We show here that pyrethric acid is produced from chrysanthemol in six steps catalyzed by four enzymes, the first five steps occurring in the trichomes covering the ovaries and the last one occurring inside the ovary tissues. Three steps involve the successive oxidation of carbon 10 (C10) to a carboxylic group by TcCHH, a cytochrome P450 oxidoreductase. Two other steps involve the successive oxidation of the hydroxylated carbon 1 to give a carboxylic group by TcADH2 and TcALDH1, the same enzymes that catalyze these reactions in the formation of chrysanthemic acid. The ultimate result of the actions of these three enzymes is the formation of 10-carboxychrysanthemic acid in the trichomes. Finally, the carboxyl group at C10 is methylated by TcCCMT, a member of the SABATH methyltransferase family, to give pyrethric acid. This reaction occurs mostly in the ovaries. Expression in N. benthamiana plants of all four genes encoding aforementioned enzymes, together with TcCDS, a gene that encodes an enzyme that catalyzes the formation of chrysanthemol, led to the production of pyrethric acid.


Asunto(s)
Insecticidas/análisis , Nicotiana/metabolismo , Piretrinas/metabolismo , Vías Biosintéticas , Chrysanthemum cinerariifolium/química , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/química , Regulación de la Expresión Génica de las Plantas , Metilación , Filogenia , Extractos Vegetales/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato
2.
Plant Physiol ; 164(2): 612-22, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24390393

RESUMEN

Some plants produce methylketones as potent defense compounds against various insects. Wild tomato (Solanum habrochaites), a relative of the cultivated tomato (Solanum lycopersicum), synthesizes large amounts of 2-methylketones in its glandular trichomes, but cultivated tomato trichomes contain little or no methylketones. Two enzymes, Solanum habrochaites methylketone synthase1 (ShMKS1) and ShMKS2, are required to convert ß-ketoacyl acyl-carrier protein intermediates of the fatty acid biosynthetic pathway to methylketones. ShMKS2 is a thioesterase that hydrolyzes ß-ketoacyl acyl-carrier protein, and ShMKS1 is a decarboxylase that converts the resulting 3-ketoacids to 2-methylketones. We introduced ShMKS2 by itself or together with ShMKS1 to Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and cultivated tomato under the control of the 35S, Rubisco small subunit, and tomato trichome-specific promoters. Young tobacco and Arabidopsis plants expressing both genes under the control of 35S and Rubisco small subunit promoters produced methylketones in their leaves but had serious growth defects. As plants matured, they ceased to produce methylketones. Tobacco plants but not Arabidopsis or tomato plants expressing only ShMKS2 under the 35S promoter also synthesized methylketones, but at a lower rate. Transgenic cultivated tomato plants expressing ShMKS1 and ShMKS2 under trichome-specific promoters had slightly elevated levels of methylketone. Trace amounts of myristic acid were also detected in transgenic plants constitutively expressing ShMKS2 with or without ShMKS1. These results suggest that increases in methylketone production in plants will require the targeting of the pathway to self-contained structures in the plant and may also require increasing the flux of fatty acid biosynthesis.


Asunto(s)
Arabidopsis/genética , Carboxiliasas/metabolismo , Cetonas/metabolismo , Ácido Mirístico/metabolismo , Proteínas de Plantas/metabolismo , Solanum/enzimología , Carboxiliasas/genética , Cromatografía de Gases y Espectrometría de Masas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Hojas de la Planta/enzimología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Solanum/genética , Nicotiana/genética , Tricomas/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
3.
Plant Physiol ; 164(1): 80-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24254315

RESUMEN

Isoprenoids are diverse compounds that have their biosynthetic origin in the initial condensation of isopentenyl diphosphate and dimethylallyl diphosphate to form C10 prenyl diphosphates that can be elongated by the addition of subsequent isopentenyl diphosphate units. These reactions are catalyzed by either cis-prenyltransferases (CPTs) or trans-prenyltransferases. The synthesis of volatile terpenes in plants typically proceeds through either geranyl diphosphate (C10) or trans-farnesyl diphosphate (C15), to yield monoterpenes and sesquiterpenes, respectively. However, terpene biosynthesis in glandular trichomes of tomato (Solanum lycopersicum) and related wild relatives also occurs via the cis-substrates neryl diphosphate (NPP) and 2Z,6Z-farnesyl diphosphate (Z,Z-FPP). NPP and Z,Z-FPP are synthesized by neryl diphosphate synthase1 (NDPS1) and Z,Z-farnesyl diphosphate synthase (zFPS), which are encoded by the orthologous CPT1 locus in tomato and Solanum habrochaites, respectively. In this study, comparative sequence analysis of NDPS1 and zFPS enzymes from S. habrochaites accessions that synthesize either monoterpenes or sesquiterpenes was performed to identify amino acid residues that correlate with the ability to synthesize NPP or Z,Z-FPP. Subsequent structural modeling, coupled with site-directed mutagenesis, highlighted the importance of four amino acids located within conserved domain II of CPT enzymes that form part of the second α-helix, for determining substrate and product specificity of these enzymes. In particular, the relative positioning of aromatic amino acid residues at positions 100 and 107 determines the ability of these enzymes to synthesize NPP or Z,Z-FPP. This study provides insight into the biochemical evolution of terpene biosynthesis in the glandular trichomes of Solanum species.


Asunto(s)
Geraniltranstransferasa/metabolismo , Proteínas de Plantas/metabolismo , Solanum/enzimología , Transferasas/metabolismo , Geraniltranstransferasa/química , Geraniltranstransferasa/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Fosfatos de Poliisoprenilo/metabolismo , Conformación Proteica , Solanum/metabolismo , Especificidad por Sustrato , Terpenos/metabolismo , Transferasas/química , Transferasas/genética , Tricomas/enzimología , Tricomas/genética
4.
Plant Cell ; 25(6): 2022-36, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23757397

RESUMEN

Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate-utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.


Asunto(s)
Familia de Multigenes , Proteínas de Plantas/genética , Solanum/genética , Terpenos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Bases , Vías Biosintéticas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Diterpenos/química , Diterpenos/metabolismo , Evolución Molecular , Conversión Génica , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Variación Genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum/clasificación , Solanum/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Terpenos/química , Transferasas/clasificación , Transferasas/genética , Transferasas/metabolismo
5.
Plant Physiol ; 162(1): 52-62, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23547102

RESUMEN

White campion (Silene latifolia) is a dioecious plant that emits 1,2-dimethoxybenzene (veratrole), a potent pollinator attractant to the nocturnal moth Hadena bicruris. Little is known about veratrole biosynthesis, although methylation of 2-methoxyphenol (guaiacol), another volatile emitted from white campion flowers, has been proposed. Here, we explore the biosynthetic route to veratrole. Feeding white campion flowers with [(13)C9]l-phenylalanine increased guaiacol and veratrole emission, and a significant portion of these volatile molecules contained the stable isotope. When white campion flowers were treated with the phenylalanine ammonia lyase inhibitor 2-aminoindan-2-phosphonic acid, guaiacol and veratrole levels were reduced by 50% and 63%, respectively. Feeding with benzoic acid (BA) or salicylic acid (SA) increased veratrole emission 2-fold, while [(2)H5]BA and [(2)H6]SA feeding indicated that the benzene ring of both guaiacol and veratrole is derived from BA via SA. We further report guaiacol O-methyltransferase (GOMT) activity in the flowers of white campion. The enzyme was purified to apparent homogeneity, and the peptide sequence matched that encoded by a recently identified complementary DNA (SlGOMT1) from a white campion flower expressed sequence tag database. Screening of a small population of North American white campion plants for floral volatile emission revealed that not all plants emitted veratrole or possessed GOMT activity, and SlGOMT1 expression was only observed in veratrole emitters. Collectively these data suggest that veratrole is derived by the methylation of guaiacol, which itself originates from phenylalanine via BA and SA, and therefore implies a novel branch point of the general phenylpropanoid pathway.


Asunto(s)
Anisoles/metabolismo , Flores/enzimología , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Silene/enzimología , Secuencia de Aminoácidos , Animales , Anisoles/química , Ácido Benzoico/farmacología , Vías Biosintéticas , Isótopos de Carbono/análisis , ADN Complementario/genética , Flores/química , Flores/efectos de los fármacos , Flores/genética , Guayacol/química , Guayacol/metabolismo , Indanos/farmacología , Metilación , Aceites Volátiles/metabolismo , Organofosfonatos/farmacología , Fenilalanina/metabolismo , Fenilanina Amoníaco-Liasa/antagonistas & inhibidores , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/aislamiento & purificación , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Polinización , Ácido Salicílico/farmacología , Análisis de Secuencia de Proteína , Silene/química , Silene/efectos de los fármacos , Silene/genética
6.
J Ind Microbiol Biotechnol ; 39(11): 1703-12, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22850984

RESUMEN

Methyl ketones are a group of highly reduced platform chemicals with widespread applications in the fragrance, flavor and pharmacological industries. Current methods for the industrial production of methyl ketones include oxidation of hydrocarbons, but recent advances in the characterization of methyl ketone synthases from wild tomato have sparked interest towards the development of microbial platforms for the industrial production of methyl ketones. A functional methyl ketone biosynthetic pathway was constructed in Escherichia coli by over-expressing two genes from Solanum habrochaites: shmks2, encoding a 3-ketoacyl-ACP thioesterase, and shmks1, encoding a beta-decarboxylase. These enzymes enabled methyl ketone synthesis from 3-ketoacyl-ACP, an intermediate in the fatty acid biosynthetic cycle. The production of 2-nonanone, 2-undecanone, and 2-tridecanone by MG1655 pTH-shmks2-shmks1 was initially detected by nuclear magnetic resonance and gas chromatography-mass spectrometry analyses at levels close to 6 mg/L. The deletion of major fermentative pathways leading to ethanol (adhE), lactate (ldhA), and acetate (pta, poxB) production allowed for the carbon flux to be redirected towards methyl ketone production, doubling total methyl ketone concentration. Variations in methyl ketone production observed under different working volumes in flask experiments led to a more detailed analysis of the effects of oxygen availability on methyl ketone concentration in order to determine optimal levels of oxygen. The methyl ketone concentration achieved with MG1655 ∆adhE ∆ldhA ∆poxB ∆pta pTrcHis2A-shmks2-shmks1, the best performer strain in this study, was approximately 500 mg/L, the highest reported for an engineered microorganism. Through the establishment of optimal operating conditions and by executing rational metabolic engineering strategies, we were able to increase methyl ketone concentrations by almost 75-fold from the initial confirmatory levels.


Asunto(s)
Escherichia coli/metabolismo , Cetonas/química , Cetonas/metabolismo , Ingeniería Metabólica , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Carboxiliasas/genética , Carboxiliasas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Fermentación/efectos de los fármacos , Glucosa/metabolismo , Oxígeno/metabolismo , Oxígeno/farmacología , Solanum/enzimología , Solanum/genética
7.
Plant Mol Biol ; 77(4-5): 323-36, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21818683

RESUMEN

Solanum lycopersicum and Solanum habrochaites (f. typicum) accession PI127826 emit a variety of sesquiterpenes. To identify terpene synthases involved in the production of these volatile sesquiterpenes, we used massive parallel pyrosequencing (RNA-seq) to obtain the transcriptome of the stem trichomes from these plants. This approach resulted initially in the discovery of six sesquiterpene synthase cDNAs from S. lycopersicum and five from S. habrochaites. Searches of other databases and the S. lycopersicum genome resulted in the discovery of two additional sesquiterpene synthases expressed in trichomes. The sesquiterpene synthases from S. lycopersicum and S. habrochaites have high levels of protein identity. Several of them appeared to encode for non-functional proteins. Functional recombinant proteins produced germacrenes, ß-caryophyllene/α-humulene, viridiflorene and valencene from (E,E)-farnesyl diphosphate. However, the activities of these enzymes do not completely explain the differences in sesquiterpene production between the two tomato plants. RT-qPCR confirmed high levels of expression of most of the S. lycopersicum sesquiterpene synthases in stem trichomes. In addition, one sesquiterpene synthase was induced by jasmonic acid, while another appeared to be slightly repressed by the treatment. Our data provide a foundation to study the evolution of terpene synthases in cultivated and wild tomato.


Asunto(s)
Transferasas Alquil y Aril/química , Proteínas de Plantas/química , ARN de Planta/química , Solanum lycopersicum/genética , Solanum/genética , Transferasas Alquil y Aril/genética , ADN Complementario/química , Biblioteca de Genes , Solanum lycopersicum/enzimología , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ARN , Sesquiterpenos/metabolismo , Solanum/enzimología
8.
Plant Physiol ; 155(4): 1999-2009, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21343428

RESUMEN

Flavonoids are a class of metabolites found in many plant species. They have been reported to serve several physiological roles, such as in defense against herbivores and pathogens and in protection against harmful ultraviolet radiation. They also serve as precursors of pigment compounds found in flowers, leaves, and seeds. Highly methylated, nonglycosylated derivatives of the flavonoid myricetin flavonoid, have been previously reported from a variety of plants, but O-methyltransferases responsible for their synthesis have not yet been identified. Here, we show that secreting glandular trichomes (designated types 1 and 4) and storage glandular trichomes (type 6) on the leaf surface of wild tomato (Solanum habrochaites accession LA1777) plants contain 3,7,3'-trimethyl myricetin, 3,7,3',5'-tetramethyl myricetin, and 3,7,3',4',5'-pentamethyl myricetin, with gland types 1 and 4 containing severalfold more of these compounds than type 6 glands and with the tetramethylated compound predominating in all three gland types. We have also identified transcripts of two genes expressed in the glandular trichomes and showed that they encode enzymes capable of methylating myricetin at the 3' and 5' and the 7 and 4' positions, respectively. Both genes are preferentially expressed in secreting glandular trichome types 1 and 4 and to a lesser degree in storage trichome type 6, and the levels of the proteins they encode are correspondingly higher in types 1 and 4 glands compared with type 6 glands.


Asunto(s)
Flavonoides/química , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Solanum/enzimología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Metaboloma , Metiltransferasas/genética , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , ARN de Planta/genética , Solanum/genética , Especificidad por Sustrato
9.
Plant Physiol ; 155(1): 524-39, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21098679

RESUMEN

Glandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels. Comparison of S. habrochaites type 1 and 4 glandular trichomes revealed few differences in chemical content or transcript abundance, leading to the conclusion that these two glandular trichome types are the same and differ perhaps only in stalk length. The observation that all of the other species examined here contain either type 1 or 4 trichomes (not both) supports the conclusion that these two trichome types are the same. Most differences in metabolites between type 1 and 4 glands on the one hand and type 6 glands on the other hand are quantitative but not qualitative. Several glandular trichome types express genes associated with photosynthesis and carbon fixation, indicating that some carbon destined for specialized metabolism is likely fixed within the trichome secretory cells. Finally, Solanum type 7 glandular trichomes do not appear to be involved in the biosynthesis and storage of specialized metabolites and thus likely serve another unknown function, perhaps as the site of the synthesis of protease inhibitors.


Asunto(s)
Genómica/métodos , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/genética , Solanum/genética , Cromatografía Liquida , Análisis por Conglomerados , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Espectrometría de Masas , Metaboloma/genética , Datos de Secuencia Molecular , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Análisis de Componente Principal , Solanum/metabolismo , Especificidad de la Especie
10.
Plant J ; 60(2): 292-302, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19659733

RESUMEN

The exact biosynthetic pathways leading to benzoic acid (BA) formation in plants are not known, but labeling experiments indicate the contribution of both beta-oxidative and non-beta-oxidative pathways. In Petunia hybrida BA is a key precursor for the production of volatile benzenoids by its flowers. Using functional genomics, we identified a 3-ketoacyl-CoA thiolase, PhKAT1, which is involved in the benzenoid biosynthetic pathway and the production of BA. PhKAT1 is localised in the peroxisomes, where it is important for the formation of benzoyl-CoA-related compounds. Silencing of PhKAT1 resulted in a major reduction in BA and benzenoid formation, leaving the production of other phenylpropanoid-related volatiles unaffected. During the night, when volatile benzenoid production is highest, it is largely the beta-oxidative pathway that contributes to the formation of BA and benzenoids. Our studies add the benzenoid biosynthetic pathway to the list of pathways in which 3-ketoacyl-CoA thiolases are involved in plants.


Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Ácido Benzoico/metabolismo , Petunia/genética , Proteínas de Plantas/metabolismo , Acetil-CoA C-Aciltransferasa/genética , ADN Complementario/genética , Flores/enzimología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Datos de Secuencia Molecular , Aceites Volátiles , Peroxisomas/genética , Peroxisomas/metabolismo , Petunia/enzimología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética
11.
Plant Mol Biol ; 68(6): 633-51, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18819010

RESUMEN

Cistus creticus subsp. creticus is a plant of intrinsic scientific interest due to the distinctive pharmaceutical properties of its resin. Labdane-type diterpenes, the main constituents of the resin, exhibit considerable antibacterial and cytotoxic activities. In this study chemical analysis of isolated trichomes from different developmental stages revealed that young leaves of 1-2 cm length displayed the highest content of labdane-type diterpenes (80 mg/g fresh weight) whereas trichomes from older leaves (2-3 or 3-4 cm) exhibited gradual decreased concentrations. A cDNA library was constructed enriched in transcripts from trichomes isolated from young leaves, which are characterized by high levels of labdane-type diterpenes. Functional annotation of 2,022 expressed sequence tags (ESTs) from the trichome cDNA library based on homology to A. thaliana genes suggested that 8% of the putative identified sequences were secondary metabolism-related and involved primarily in flavonoid and terpenoid biosynthesis. A significant proportion of the ESTs (38%) displayed no significant similarity to any other DNA deposited in databases, indicating a yet unknown function. Custom DNA microarrays constructed with 1,248 individual clones from the cDNA library facilitated transcriptome comparisons between trichomes and trichome-free tissues. In addition, gene expression studies in various Cistus tissues and organs for one of the genes highlighted as the most differentially expressed by the microarray experiments revealed a putative sesquiterpene synthase with a trichome-specific expression pattern. Full length cDNA isolation and heterologous expression in E. coli followed by biochemical analysis, led to the characterization of the produced protein as germacrene B synthase.


Asunto(s)
Cistus/genética , Genes de Plantas , Plantas Medicinales/genética , ARN Mensajero/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Etiquetas de Secuencia Expresada , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
12.
Curr Opin Biotechnol ; 19(2): 181-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18394878

RESUMEN

Metabolic engineering of the volatile spectrum offers enormous potential for plant improvement because of the great contribution of volatile secondary metabolites to reproduction, defense and food quality. Recent advances in the identification of the genes and enzymes responsible for the biosynthesis of volatile compounds have made this metabolic engineering highly feasible. Notable successes have been reported in enhancing plant defenses and improving scent and aroma quality of flowers and fruits. These studies have also revealed challenges and limitations which will be likely surmounted as our understanding of plant volatile network improves.


Asunto(s)
Ingeniería Genética/métodos , Aceites Volátiles/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Modelos Biológicos , Aceites Volátiles/química , Aceites de Plantas/química , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Volatilización
13.
Plant Cell ; 17(4): 1252-67, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15772286

RESUMEN

Medium-length methylketones (C7-C15) are highly effective in protecting plants from numerous pests. We used a biochemical genomics approach to elucidate the pathway leading to synthesis of methylketones in the glandular trichomes of the wild tomato Lycopersicon hirsutum f glabratum (accession PI126449). A comparison of gland EST databases from accession PI126449 and a second L. hirsutum accession, LA1777, whose glands do not contain methylketones, showed that the expression of genes for fatty acid biosynthesis is elevated in PI126449 glands, suggesting de novo biosynthesis of methylketones. A cDNA abundant in the PI126449 gland EST database but rare in the LA1777 database was similar in sequence to plant esterases. This cDNA, designated Methylketone Synthase 1 (MKS1), was expressed in Escherichia coli and the purified protein used to catalyze in vitro reactions in which C12, C14, and C16 beta-ketoacyl-acyl-carrier-proteins (intermediates in fatty acid biosynthesis) were hydrolyzed and decarboxylated to give C11, C13, and C15 methylketones, respectively. Although MKS1 does not contain a classical transit peptide, in vitro import assays showed that it was targeted to the stroma of plastids, where fatty acid biosynthesis occurs. Levels of MKS1 transcript, protein, and enzymatic activity were correlated with levels of methylketones and gland density in a variety of tomato accessions and in different plant organs.


Asunto(s)
Enzimas/metabolismo , Cetonas/metabolismo , Lycopodiaceae/enzimología , Lycopodiaceae/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cloroplastos/enzimología , ADN Complementario/análisis , ADN Complementario/genética , Bases de Datos de Proteínas , Metabolismo Energético/fisiología , Enzimas/genética , Enzimas/aislamiento & purificación , Ácidos Grasos/biosíntesis , Genoma de Planta , Genómica , Cetonas/química , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Estructuras de las Plantas/enzimología , Estructuras de las Plantas/genética
14.
Plant Physiol ; 129(4): 1899-907, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12177504

RESUMEN

Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayed O-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels of OOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.


Asunto(s)
Metiltransferasas/metabolismo , Fenoles/metabolismo , Tallos de la Planta/enzimología , Rosa/enzimología , Secuencia de Aminoácidos , Northern Blotting , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Cromatografía de Gases y Espectrometría de Masas , Metiltransferasas/genética , Datos de Secuencia Molecular , Floroglucinol/metabolismo , Filogenia , Extractos Vegetales/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Resorcinoles/metabolismo , Rosa/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA