Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Dis ; 10(10): 771, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601788

RESUMEN

The retention using selective hooks (RUSH) system allows to retain a target protein fused to green fluorescent protein (GFP) and a streptavidin-binding peptide (SBP) due to the interaction with a molar excess of streptavidin molecules ("hooks") targeted to selected subcellular compartments. Supplementation of biotin competitively disrupts the interaction between the SBP moiety and streptavidin, liberating the chimeric target protein from its hooks, while addition of avidin causes the removal of biotin from the system and reestablishes the interaction. Based on this principle, we engineered two chimeric proteins involved in autophagy, namely microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B, best known as LC3) and sequestosome-1 (SQSTM1, best known as p62) to move them as SBP-GFP-LC3 and p62-SBP-GFP at will between the cytosol and two different organelles, the endoplasmic reticulum (ER) and the Golgi apparatus. Although both proteins were functional in thus far that SBP-GFP-LC3 and p62-SBP-GFP could recruit their endogenous binding partners, p62 and LC3, respectively, their enforced relocation to the ER or Golgi failed to induce organelle-specific autophagy. Hence, artificial tethering of LC3 or p62 to the surface of the ER and the Golgi is not sufficient to trigger autophagy.


Asunto(s)
Autofagia/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/efectos de los fármacos , Biotina/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica/genética , Unión Proteica/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estreptavidina/metabolismo
2.
Nat Commun ; 10(1): 1935, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028249

RESUMEN

Despite their location at the cell surface, several receptor tyrosine kinases (RTK) are also found in the nucleus, as either intracellular domains or full length proteins. However, their potential nuclear functions remain poorly understood. Here we find that a fraction of full length Colony Stimulating Factor-1 Receptor (CSF-1R), an RTK involved in monocyte/macrophage generation, migrates to the nucleus upon CSF-1 stimulation in human primary monocytes. Chromatin-immunoprecipitation identifies the preferential recruitment of CSF-1R to intergenic regions, where it co-localizes with H3K4me1 and interacts with the transcription factor EGR1. When monocytes are differentiated into macrophages with CSF-1, CSF-1R is redirected to transcription starting sites, colocalizes with H3K4me3, and interacts with ELK and YY1 transcription factors. CSF-1R expression and chromatin recruitment is modulated by small molecule CSF-1R inhibitors and altered in monocytes from chronic myelomonocytic leukemia patients. Unraveling this dynamic non-canonical CSF-1R function suggests new avenues to explore the poorly understood functions of this receptor and its ligands.


Asunto(s)
Regulación de la Expresión Génica , Leucemia Mielomonocítica Crónica/genética , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Sistemas CRISPR-Cas , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cromatina/química , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Colorantes Fluorescentes/química , Edición Génica , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Leucemia Mielomonocítica Crónica/metabolismo , Leucemia Mielomonocítica Crónica/patología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Maleimidas/química , Cultivo Primario de Células , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transducción de Señal , Células THP-1 , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
3.
J Histochem Cytochem ; 56(10): 911-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18574249

RESUMEN

Tagging of proteins in vivo by covalent attachment of a biotin moiety has emerged as a new prospective tool for protein detection and purification. Previously, we established a strategy for expression of in vivo biotinylated proteins in mammalian cells. It is based on coexpression of the protein of interest fused to a short biotin acceptor peptide and biotin ligase BirA cloned in the same vector. We show here that the in vivo biotinylation can be used for immunogold postembedding labeling in immunoelectron microscopy experiments. We show that immunoelectron microscopy with biotinylated nuclear proteins is compatible with a wide range of postembedding methods, facilitating combination of morphological and localization studies in a single experiment. We also show that the method works in both transient transfection and stable cell line expression protocols and can be used for colocalization studies. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Asunto(s)
Biotina/metabolismo , Proteínas Nucleares/metabolismo , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Cromatina/metabolismo , Proteínas de Escherichia coli/genética , Histonas/metabolismo , Humanos , Microscopía Inmunoelectrónica , Oligopéptidos/genética , Oligopéptidos/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Adhesión del Tejido , Transfección
4.
J Exp Med ; 202(12): 1691-701, 2005 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-16365148

RESUMEN

Systemic anticancer chemotherapy is immunosuppressive and mostly induces nonimmunogenic tumor cell death. Here, we show that even in the absence of any adjuvant, tumor cells dying in response to anthracyclins can elicit an effective antitumor immune response that suppresses the growth of inoculated tumors or leads to the regression of established neoplasia. Although both antracyclins and mitomycin C induced apoptosis with caspase activation, only anthracyclin-induced immunogenic cell death was immunogenic. Caspase inhibition by Z-VAD-fmk or transfection with the baculovirus inhibitor p35 did not inhibit doxorubicin (DX)-induced cell death, yet suppressed the immunogenicity of dying tumor cells in several rodent models of neoplasia. Depletion of dendritic cells (DCs) or CD8+T cells abolished the immune response against DX-treated apoptotic tumor cells in vivo. Caspase inhibition suppressed the capacity of DX-killed cells to be phagocytosed by DCs, yet had no effect on their capacity to elicit DC maturation. Freshly excised tumors became immunogenic upon DX treatment in vitro, and intratumoral inoculation of DX could trigger the regression of established tumors in immunocompetent mice. These results delineate a procedure for the generation of cancer vaccines and the stimulation of anti-neoplastic immune responses in vivo.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Doxorrubicina/farmacología , Mitomicina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Antibióticos Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Inhibidores de Caspasas , Línea Celular Tumoral , Células Dendríticas/inmunología , Doxorrubicina/uso terapéutico , Immunoblotting , Etiquetado Corte-Fin in Situ , Ratones , Mitomicina/uso terapéutico , Neoplasias/prevención & control , Ratas , Vacunación/métodos , Proteínas Virales/genética , Proteínas Virales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA