Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 34(1): 974-987, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914667

RESUMEN

Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single-cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential-dependent communication to maintain synchrony. Our results reveal that these thirst-controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior.


Asunto(s)
Ritmo Circadiano , Hipotálamo/fisiología , Prosencéfalo/fisiología , Animales , Órganos Circunventriculares/fisiología , Colforsina/farmacología , Regulación de la Expresión Génica , Homeostasis , Luminiscencia , Masculino , Ratones , Neuronas/fisiología , Oscilometría , Órgano Subfornical/fisiología , Tetrodotoxina/farmacología
2.
Am J Physiol Regul Integr Comp Physiol ; 310(8): R711-23, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26818054

RESUMEN

Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content.


Asunto(s)
Anticipación Psicológica , Regulación del Apetito , Ritmo Circadiano , Dieta Alta en Grasa , Grasas de la Dieta/administración & dosificación , Conducta Alimentaria , Hidrocortisona/sangre , Hipotálamo/metabolismo , Adaptación Fisiológica , Animales , Anticipación Psicológica/efectos de los fármacos , Regulación del Apetito/efectos de los fármacos , Calorimetría Indirecta , Ritmo Circadiano/efectos de los fármacos , Grasas de la Dieta/sangre , Ingestión de Energía , Metabolismo Energético , Ácidos Grasos no Esterificados/administración & dosificación , Ácidos Grasos no Esterificados/sangre , Conducta Alimentaria/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Hipotálamo/efectos de los fármacos , Masculino , Mifepristona/farmacología , Actividad Motora , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Factores de Tiempo
3.
Essays Biochem ; 49(1): 1-17, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21819381

RESUMEN

Humans and other mammals exhibit a remarkable array of cyclical changes in physiology and behaviour. These are often synchronized to the changing environmental light-dark cycle and persist in constant conditions. Such circadian rhythms are controlled by an endogenous clock, located in the suprachiasmatic nuclei of the hypothalamus. This structure and its cells have unique properties, and some of these are reviewed to highlight how this central clock controls and sculpts our daily activities.


Asunto(s)
Conducta/fisiología , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Neuronas/fisiología , Núcleo Supraquiasmático/fisiología , Potenciales de Acción/fisiología , Animales , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Neuronas/metabolismo , Fotoperiodo , Núcleo Supraquiasmático/metabolismo
4.
PLoS One ; 6(4): e18926, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559484

RESUMEN

Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC(2) receptor expression; both VPAC(2) receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC(2) receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2(-/-) mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC(2) receptor. Vipr2(-/-) SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2(-/-) Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2(-/-) cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2(-/-) mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2(-/-) animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting.


Asunto(s)
Neuropéptidos/química , Oscilometría/métodos , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Núcleo Supraquiasmático/metabolismo , Animales , Ritmo Circadiano , Colforsina/metabolismo , Cruzamientos Genéticos , Péptido Liberador de Gastrina/química , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Circadianas Period/genética , Hipófisis/metabolismo , Transducción de Señal
5.
PLoS Biol ; 8(12): e1000558, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21151887

RESUMEN

Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pathways. Here, we address this deficit. Using new reporter lines, we show that mRGC projections are much more extensive than previously thought and extend across the dorsal lateral geniculate nucleus (dLGN), origin of thalamo-cortical projection neurons. We continue to show that this input supports extensive physiological light responses in the dLGN and visual cortex in mice lacking rods+cones (a model of advanced retinal degeneration). Moreover, using chromatic stimuli to isolate melanopsin-derived responses in mice with an intact visual system, we reveal strong melanopsin input to the ∼40% of neurons in the LGN that show sustained activation to a light step. We demonstrate that this melanopsin input supports irradiance-dependent increases in the firing rate of these neurons. The implication that melanopsin is required to accurately encode stimulus irradiance is confirmed using melanopsin knockout mice. Our data establish melanopsin-based photoreception as a significant source of sensory input to the thalamo-cortical visual system, providing unique irradiance information and allowing visual responses to be retained even in the absence of rods+cones. These findings identify mRGCs as a potential origin for aspects of visual perception and indicate that they may support vision in people suffering retinal degeneration.


Asunto(s)
Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Animales , Modelos Animales de Enfermedad , Cuerpos Geniculados/anatomía & histología , Cuerpos Geniculados/fisiología , Ratones , Ratones Noqueados , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/fisiología , Degeneración Retiniana/fisiopatología , Células Ganglionares de la Retina/citología , Tálamo/anatomía & histología , Corteza Visual/anatomía & histología , Percepción Visual
6.
Mol Brain ; 2: 28, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19712475

RESUMEN

BACKGROUND: In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation. RESULTS: Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. CONCLUSION: Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/fisiología , Relojes Biológicos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Colforsina/farmacología , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Conducta Alimentaria/efectos de los fármacos , Privación de Alimentos , Hipotálamo/efectos de los fármacos , Luciferasas/metabolismo , Mediciones Luminiscentes , Masculino , Eminencia Media/efectos de los fármacos , Eminencia Media/fisiología , Ratones , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Proteínas Circadianas Period/metabolismo , Canales de Sodio/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/fisiología , Tetrodotoxina/farmacología
7.
Mol Brain ; 1: 19, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19055781

RESUMEN

Temporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN) and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH). Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship. Unfortunately, since orexin neurons are themselves activated by locomotor promoting cues, it is unclear how these two systems interact to regulate behavioral rhythms. Here mice were placed in conditions of constant light, which suppressed locomotor activity, but also revealed a highly pronounced circadian pattern in orexin neuronal activation. Significantly, activation of orexin neurons in the medial and lateral TH occurred prior to the onset of sustained wheel-running activity. Moreover, exposure to a 6 h dark pulse during the subjective day, a stimulus that promotes arousal and phase advances behavioral rhythms, activated neurons in the medial and lateral TH including those containing orexin. Concurrently, this stimulus suppressed SCN activity while activating cells in the median raphe. In contrast, dark pulse exposure during the subjective night did not reset SCN-controlled behavioral rhythms and caused a transient suppression of neuronal activation in the TH. Collectively these results demonstrate, for the first time, pronounced circadian control of orexin neuron activation and implicate recruitment of orexin cells in dark pulse resetting of the SCN circadian clock.


Asunto(s)
Ritmo Circadiano/fisiología , Oscuridad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Conducta Animal , Ritmo Circadiano/efectos de la radiación , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Neuronas/citología , Neuronas/efectos de la radiación , Orexinas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleos del Rafe/citología , Núcleos del Rafe/metabolismo , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/metabolismo
8.
Peptides ; 27(11): 2976-92, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16930773

RESUMEN

The suprachiasmatic nucleus (SCN) of the hypothalamus houses the main mammalian circadian clock. This clock is reset by light-dark cues and stimuli that evoke arousal. Photic information is relayed directly to the SCN via the retinohypothalamic tract (RHT) and indirectly via the geniculohypothalamic tract, which originates from retinally innervated cells of the thalamic intergeniculate leaflet (IGL). In addition, pathways from the dorsal and median raphe (DR and MR) convey arousal state information to the IGL and SCN, respectively. The SCN regulates many physiological events in the body via a network of efferent connections to areas of the brain such as the habenula (Hb) in the epithalamus, subparaventricular zone (SPVZ) of the hypothalamus and locus coeruleus of the brainstem-areas of the brain associated with arousal and behavioral activation. Substance P (SP) and the neurokinin-1 (NK-1) receptor are present in the rat SCN and IGL, and SP acting via the NK-1 receptor alters SCN neuronal activity and resets the circadian clock in this species. However, the distribution and role of SP and NK-1 in the circadian system of other rodent species are largely unknown. Here we use immunohistochemical techniques to map the novel distribution of SP and NK-1 in the hypothalamus, thalamus and brainstem of the Alaskan northern red-backed vole, Clethrionomys rutilus, a species of rodent currently being used in circadian biology research. Interestingly, the pattern of immunoreactivity for SP in the red-backed vole SCN was very different from that seen in many other nocturnal and diurnal rodents.


Asunto(s)
Arvicolinae/fisiología , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Receptores de Neuroquinina-1/biosíntesis , Sustancia P/biosíntesis , Alaska , Animales , Arvicolinae/anatomía & histología , Encéfalo/anatomía & histología , Tronco Encefálico/anatomía & histología , Tronco Encefálico/metabolismo , Hipotálamo/anatomía & histología , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Receptores de Neuroquinina-1/análisis , Sustancia P/análisis , Tálamo/anatomía & histología , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA