RESUMEN
BACKGROUND: In adamantinomatous craniopharyngiomas, tumor topographical categories, cystic component volume, and magnetic resonance signal intensity may impact prognosis. OBJECTIVE: To identify magnetic resonance imaging (MRI) variables associated with pituitary-hypothalamic axis dysfunction and predictive of outcome in children with cystic adamantinomatous craniopharyngiomas. MATERIALS AND METHODS: We evaluated 40 preoperative MRIs of adamantinomatous craniopharyngiomas to classify tumor topography, volume, and signal intensity of the cystic components and peritumoral edema. Volumes and normalized signal intensity minimum values were extracted from coronal T2-weighted images (nT2min). Radiological variables were compared to pituitary-hypothalamic axis dysfunction-related clinical data and surgical outcomes. RESULTS: Adamantinomatous craniopharyngiomas were categorized into five topographic classes (12 patients, sellar-suprasellar; seven patients, pseudo-intraventricular; six patients, strict intraventricular; 14 patients, secondary intraventricular; one patient, not strict intraventricular). All cases exhibited a predominant (30 patients, 80%) or total (10 patients, 20%) cystic tumor component and displayed low nT2min percentage values compared to cerebrospinal fluid (42.3% [interquartile range 28.4-54.6%]). Significant associations between tumor topographic classes and pituitary dysfunction (P<0.001), and between peritumoral edema and hypothalamic dysfunction (P<0.001) were found. Considering extent of surgical removal and tumor relapse, volume of the cystic tumor component displayed a positive correlation (P=0.002; r=0.48; P=0.02; r=0.36), while nT2min intensity values exhibited a negative correlation (P=0.01; r= - 0.40; P=0.028; r= - 0.34). CONCLUSION: Severe hypothalamic-pituitary axis dysfunction is associated with tumors along the pituitary stalk and peritumoral edema. Tumor invasion of the third ventricle, tight adherence to the hypothalamus, larger volumes, and lower nT2min intensity of the tumor cystic component are independent predictors of extent of adamantinomatous craniopharyngioma excision and recurrence.
Asunto(s)
Craneofaringioma , Neoplasias Hipofisarias , Niño , Humanos , Craneofaringioma/diagnóstico por imagen , Craneofaringioma/cirugía , Craneofaringioma/patología , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/patología , Recurrencia Local de Neoplasia/patología , Pronóstico , Imagen por Resonancia Magnética/métodos , Hipotálamo/diagnóstico por imagen , Hipotálamo/patología , EdemaRESUMEN
BACKGROUND: Multiple Sclerosis (MS) is a chronic disease with a high prevalence of neuropsychiatric symptoms. Mindfulness is a practice that encourages individuals to cultivate a present-focused, acceptance-based approach for managing psychological distress. Its positive effect on MS has been demonstrated, but learning such technique is expensive and time-consuming. In this study, we investigated the feasibility and efficacy of an 8-week, at-home, smart-device aided mindfulness program in a cohort of MS patients. Specifically, we explored the role of a brain-sensing headband providing real-time auditory feedback as supportive tool for meditation exercises. METHODS: The study included two visits, one at baseline and another after the mindfulness program. We measured adherence to the proposed mindfulness treatment and its effect on questionnaires investigating different psychological domains, cognition, fatigue, quality of life and quantitative EEG parameters. All participants received a smart biofeedback device to be used during the therapeutic program consisting of daily meditative exercises. RESULTS: Twenty-nine patients were recruited for the present study. Among them, 27 (93%) completed the entire program and 17 (63%) completed more than 80% of the scheduled sessions. We observed a statistically significant reduction of the Ruminative Response Scale score and a significant increase of the Digit Span Backward. Regarding neurophysiological data, we found a significant reduction of the whole-scalp beta and parieto-occipital theta power post intervention. CONCLUSION: Our results show that an at-home, smart-device aided mindfulness program is feasible for people with MS. The efficacy in terms of reappraisals of stress, cognitive and emotional coping responses is also supported by our neurophysiological data. Further studies are warranted to better explore the role of such approaches in managing the psychological impact of MS diagnosis.
RESUMEN
OBJECTIVE: Mechanisms of action and optimal stimulation parameters of transcutaneous auricular vagus nerve stimulation (taVNS) are currently unknown. Pupil size has gained attention as a promising biomarker of vagal activation in different studies on animal models. The aim of this study is to investigate the effects of taVNS on pupil diameter in healthy subjects. METHODS: All subjects received taVNS at the left external acoustic meatus and control stimulation at the left earlobe during the same experimental session. Different intensities (0.5 mA; 1.0 mA; 2.0 mA; 3.0 mA) for both conditions were tested. Tonic pupil size was recorded in both eyes at baseline and during each stimulation using an infrared-automated pupillometer in three different illuminance conditions (scotopic, mesopic, photopic). RESULTS: In scotopic illuminance condition, a significant interaction between intensity and condition (real vs control) was found for the left eye. Post-Hoc analysis showed that during real taVNS at 2 mA, pupil size was significantly larger in comparison to baseline and 2 mA control stimulation. CONCLUSIONS: Our study demonstrates that taVNS induces pupil dilation under specific illuminance conditions and at specific stimulation intensity. SIGNIFICANCE: The effects of taVNS are strictly dependent on technical aspects, such as stimulation parameters and experimental set-up.
Asunto(s)
Pupila/fisiología , Reflejo Pupilar/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación del Nervio Vago/métodos , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Método Simple CiegoRESUMEN
INTRODUCTION: Transient global amnesia is a benign syndrome and one of the most frequent discharges from the emergency department that can hardly be distinguished from other mimicking diseases. No consensus in the evaluation of transient global amnesia has yet been found in the emergency setting. CASE REPORT: We describe a 69-year-old woman who presented to our emergency department with an abrupt onset of anterograde amnesia, preceded by a similar amnesic episode misinterpreted as transient global amnesia. Neuroradiologic, neuropsychological, and neurophysiological evaluations supported the diagnosis of vascular thalamic amnesia. CONCLUSIONS: We report a patient who clinically fulfilled transient global amnesia's criteria and in whom nevertheless was disclosed a thalamic ischemic lesion on neuroimaging.This case report highlights the importance of performing neuroradiologic screening in the emergency department even when clinical history and physical findings are highly suggestive for transient global amnesia.
Asunto(s)
Amnesia Anterógrada/patología , Amnesia Global Transitoria/diagnóstico , Tálamo/patología , Anciano , Diagnóstico Diferencial , Errores Diagnósticos , Femenino , HumanosRESUMEN
The vascularization of the human thalami is supplied by many perforating arteries, which exhibit complex distribution and many possible individual variations. One rare variant is the artery of Percheron that supplies the paramedian thalami bilaterally. Its ictal occlusion may result in a symmetric paramedian infarction, which generally leads to impairment of consciousness associated with hypersomnia. Our aim is to describe in detail sleep-wake schedules, sleep structure and microstructure in a 68-year-old patient with occlusion of Percheron's artery. EEG monitoring, performed 24 h after the onset of symptoms, showed severe disruption of the sleep-wake cycle, with episodes of sleep and wakefulness recurring irregularly during day and night. Thalamic nuclei are part of the human arousal system; medial thalamic nuclei play a pivotal role in sleep regulation at different levels. A diagnosis of paramedian thalamic infarction should be considered in patients who present with recurrent episodes of unresponsiveness.
Asunto(s)
Nivel de Alerta/fisiología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Accidente Cerebrovascular/fisiopatología , Enfermedades Talámicas/fisiopatología , Tálamo/irrigación sanguínea , Tálamo/fisiopatología , Anciano , Infarto Cerebral/complicaciones , Infarto Cerebral/fisiopatología , Femenino , Humanos , Polisomnografía , Trastornos del Sueño del Ritmo Circadiano/complicaciones , Accidente Cerebrovascular/complicaciones , Enfermedades Talámicas/complicacionesRESUMEN
The pattern of neuronal discharge within the basal ganglia is disturbed in Parkinson's disease (PD). In particular, there is a tendency for neuronal elements to synchronise at around 20 Hz in the absence of dopaminergic treatment, whereas this activity can be replaced by spontaneous synchronisation at much higher frequencies (>70 Hz) following dopaminergic treatment [J. Neurosci. 21 (2001) 1033; Brain 126 (2003) 2153]. In two PD patients (3 sides), we show that stimulating the subthalamic area at around 20 Hz exacerbates synchronisation at similar frequencies in the globus pallidus interna, the major output structure of the human basal ganglia. In contrast, stimulating the subthalamic area at >70 Hz suppresses pallidal activity at about 20 Hz. Clinically, stimulation of the subthalamic area at similar high frequencies reverses parkinsonism and forms the basis of therapeutic deep brain stimulation in PD. The results point to a possible common mechanism by which both dopaminergic treatment associated synchronisation of subthalamic activity at very high frequency and synchronisation imposed by therapeutic stimulation of the subthalamic area inhibit an abnormal and potentially deleterious synchronisation of basal ganglia output at around 20 Hz. If this activity is unchecked by synchronisation at higher frequency, then pathological 20-Hz oscillations may cascade through the basal ganglia, increasing at subsequent levels of processing.
Asunto(s)
Relojes Biológicos , Terapia por Estimulación Eléctrica/métodos , Globo Pálido/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Subtálamo/fisiopatología , Anciano , Electrodos Implantados , Electroencefalografía , Femenino , Globo Pálido/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Potenciales de la Membrana , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Procesamiento de Señales Asistido por Computador , Subtálamo/patología , Transmisión Sináptica/fisiologíaRESUMEN
OBJECTIVE: Repetitive transcranial magnetic stimulation (rTMS) of the brain can modulate neurotransmission. The aim of this preliminary study was to investigate whether rTMS of the motor cortex at low (1 Hz) or high (20 Hz) frequencies can have any beneficial effect in a transgenic rat model of amyotrophic lateral sclerosis (ALS) and in a few patients with ALS. METHODS: The effects of chronic rTMS were evaluated in 20 transgenic rats overexpressing the human G93A mutant superoxide dismutase 1 gene. Several cycles of rTMS were also performed in 4 ALS patients and the rate of progression of the disease before and during rTMS treatment was compared. RESULTS: No effects of rTMS was observed in transgenic rats. The rTMS treatment was well tolerated by the patients. All ALS patients continued to deteriorate. However, in the patients exposed to low-frequency rTMS the rate of progression during treatment was slightly slower than that evaluated before treatment; an opposite tendency was observed in patients exposed to high frequencies. CONCLUSIONS: Though we cannot be sure whether the effects observed in the patients can be attributed to rTMS, further investigation using low-frequency motor cortex stimulation on a larger group of ALS patients is warranted. SIGNIFICANCE: The results of the pilot study in humans might open up a new therapeutic perspective in ALS based on neuromodulation.