Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diabetes ; 71(11): 2384-2394, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35904939

RESUMEN

Glucagon hypersecretion from pancreatic islet α-cells exacerbates hyperglycemia in type 1 diabetes (T1D) and type 2 diabetes. Still, the underlying mechanistic pathways that regulate glucagon secretion remain controversial. Among the three complementary main mechanisms (intrinsic, paracrine, and juxtacrine) proposed to regulate glucagon release from α-cells, juxtacrine interactions are the least studied. It is known that tonic stimulation of α-cell EphA receptors by ephrin-A ligands (EphA forward signaling) inhibits glucagon secretion in mouse and human islets and restores glucose inhibition of glucagon secretion in sorted mouse α-cells, and these effects correlate with increased F-actin density. Here, we elucidate the downstream target of EphA signaling in α-cells. We demonstrate that RhoA, a Rho family GTPase, plays a key role in this pathway. Pharmacological inhibition of RhoA disrupts glucose inhibition of glucagon secretion in islets and decreases cortical F-actin density in dispersed α-cells and α-cells in intact islets. Quantitative FRET biosensor imaging shows that increased RhoA activity follows directly from EphA stimulation. We show that in addition to modulating F-actin density, EphA forward signaling and RhoA activity affect α-cell Ca2+ activity in a novel mechanistic pathway. Finally, we show that stimulating EphA forward signaling restores glucose inhibition of glucagon secretion from human T1D donor islets.


Asunto(s)
Células Secretoras de Glucagón , Glucagón , Proteína de Unión al GTP rhoA , Animales , Humanos , Ratones , Actinas/metabolismo , Calcio/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Efrinas/metabolismo , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ligandos , Receptores de la Familia Eph/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
2.
Am J Physiol Endocrinol Metab ; 304(2): E211-21, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23211512

RESUMEN

Pancreatic ß-cells regulate glucose homeostasis by secreting insulin in response to glucose elevation and G protein-coupled receptor (GPCR) activation. Neuropeptide Y (NPY) and somatostatin (SST) attenuate insulin secretion through G(i) activation of Y(1) and SSTR(1&5) receptors, respectively. The downstream pathways altered by NPY and SST are poorly understood. Thus, we investigated these underlying mechanisms. NPY and SST increase cellular redox potential, suggesting that their inhibitory effect may not be mediated through metabolic inhibition. NPY does not affect intracellular calcium ([Ca(2+)](i)) activity upon glucose stimulation, whereas SST alters this response. G(ßγ)-subunit inhibition by gallein attenuates insulin secretion but does not alter metabolism or [Ca(2+)](i). mSIRK-induced G(ßγ) activation does not modulate glucose metabolism but increases [Ca(2+)](i) activity and potentiates insulin release. Cotreatment with gallein and NPY or SST reduces insulin secretion to levels similar to that of gallein alone. mSIRK and NPY cotreatment potentiates insulin secretion similarly to mSIRK alone, whereas mSIRK and SST treatment decreases insulin release. The data support a model where SST attenuates secretion through G(ßγ) inhibition of Ca(2+) activity, while NPY activates a Ca(2+)-independent pathway mediated by G(α). GPCR ligands signal through multiple pathways to inhibit insulin secretion, and determining these mechanisms could lead to novel diabetic therapies.


Asunto(s)
Insulina/metabolismo , Neuropéptido Y/farmacología , Somatostatina/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Glucosa/farmacología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Vías Secretoras/efectos de los fármacos , Factores de Tiempo
4.
Microsc Microanal ; 12(3): 238-54, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17481360

RESUMEN

Detection of Förster resonance energy transfer (FRET) between cyan and yellow fluorescent proteins is a key method for quantifying dynamic processes inside living cells. To compare the different cyan and yellow fluorescent proteins, FRET efficiencies were measured for a set of the possible donor:acceptor pairs. FRET between monomeric Cerulean and Venus is more efficient than the ECFP:EYFP pair and has a 10% greater Förster distance. We also compared several live cell microscopy methods for measuring FRET. The greatest contrast for changes in intramolecular FRET is obtained using a combination of ratiometric and spectral imaging. However, this method is not appropriate for establishing the presence of FRET without extra controls. Accurate FRET efficiencies are obtained by fluorescence lifetime imaging microscopy, but these measurements are difficult to collect and analyze. Acceptor photobleaching is a common and simple method for measuring FRET efficiencies. However, when applied to cyan to yellow fluorescent protein FRET, this method becomes prone to an artifact that leads to overestimation of FRET efficiency and false positive signals. FRET was also detected by measuring the acceptor fluorescence anisotropy. Although difficult to quantify, this method is exceptional for screening purposes, because it provides high contrast for discriminating FRET.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Animales , Polarización de Fluorescencia , Microscopía Fluorescente , Modelos Moleculares , Proteínas Recombinantes/química , Escifozoos/química
5.
J Biol Chem ; 279(13): 12126-34, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14688272

RESUMEN

Pancreatic beta cells secrete insulin in response to changes in the extracellular glucose. However, prolonged exposure to elevated glucose exerts toxic effects on beta cells and results in beta cell dysfunction and ultimately beta cell death (glucose toxicity). To investigate the mechanism of how increased extracellular glucose is toxic to beta cells, we used two model systems where glucose metabolism was increased in beta cell lines by enhancing glucokinase (GK) activity and exposing cells to physiologically relevant increases in extracellular glucose (3.3-20 mm). Exposure of cells with enhanced GK activity to 20 mm glucose accelerated glycolysis, but reduced cellular NAD(P)H and ATP, caused accumulation of intracellular reactive oxygen species (ROS) and oxidative damage to mitochondria and DNA, and promoted apoptotic cell death. These changes required both enhanced GK activity and exposure to elevated extracellular glucose. A ROS scavenger partially prevented the toxic effects of increased glucose metabolism. These results indicate that increased glucose metabolism in beta cells generates oxidative stress and impairs cell function and survival; this may be a mechanism of glucose toxicity in beta cells. The level of beta cell GK may also be critical in this process.


Asunto(s)
Glucosa/toxicidad , Insulina/metabolismo , Islotes Pancreáticos/citología , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Muerte Celular , Línea Celular , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Doxiciclina/farmacología , Depuradores de Radicales Libres/farmacología , Glucoquinasa/biosíntesis , Glucosa/metabolismo , Glucosa/farmacología , Secreción de Insulina , Metabolismo de los Lípidos , NADP/metabolismo , Oxígeno/metabolismo , Ratas , Especies Reactivas de Oxígeno , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA