Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199241

RESUMEN

Traumatic brain injury (TBI) disrupts thalamic and cortical integrity. The effect of post-injury reorganization and plasticity in thalamocortical pathways on the functional outcome remains unclear. We evaluated whether TBI causes structural changes in the thalamocortical axonal projection terminals in the primary somatosensory cortex (S1) that lead to hyperexcitability. TBI was induced in adult male Sprague Dawley rats with lateral fluid-percussion injury. A virus carrying the fluorescent-tagged opsin channel rhodopsin 2 transgene was injected into the ventroposterior thalamus. We then traced the thalamocortical pathways and analyzed the reorganization of their axonal terminals in S1. Next, we optogenetically stimulated the thalamocortical relays from the ventral posterior lateral and medial nuclei to assess the post-TBI functionality of the pathway. Immunohistochemical analysis revealed that TBI did not alter the spatial distribution or lamina-specific targeting of projection terminals in S1. TBI reduced the axon terminal density in the motor cortex by 44% and in S1 by 30%. A nematic tensor-based analysis revealed that in control rats, the axon terminals in layer V were orientated perpendicular to the pial surface (60.3°). In TBI rats their orientation was more parallel to the pial surface (5.43°, difference between the groups p < 0.05). Moreover, the level of anisotropy of the axon terminals was high in controls (0.063) compared with TBI rats (0.045, p < 0.05). Optical stimulation of the sensory thalamus increased alpha activity in electroencephalography by 312% in controls (p > 0.05) and 237% (p > 0.05) in TBI rats compared with the baseline. However, only TBI rats showed increased beta activity (33%) with harmonics at 5 Hz. Our findings indicate that TBI induces reorganization of thalamocortical axonal terminals in the perilesional cortex, which alters responses to thalamic stimulation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Corteza Motora/patología , Corteza Somatosensorial/patología , Tálamo/patología , Animales , Anisotropía , Ritmo beta/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Masculino , Optogenética , Estimulación Luminosa , Ratas Sprague-Dawley
2.
Epilepsia ; 62(8): 1852-1864, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34245005

RESUMEN

OBJECTIVE: To identify magnetic resonance imaging (MRI) biomarkers for post-traumatic epilepsy. METHODS: The EPITARGET (Targets and biomarkers for antiepileptogenesis, epitarget.eu) animal cohort completing T2 relaxation and diffusion tensor MRI follow-up and 1-month-long video-electroencephalography monitoring included 98 male Sprague-Dawley rats with traumatic brain injury and 18 controls. T2 imaging was performed on day (D) 2, D7, and D21 and diffusion tensor imaging (DTI) on D7 and D21 using a 7-Tesla Bruker PharmaScan MRI scanner. The mean and standard deviation (SD) of the T2 relaxation rate, multiple diffusivity measures, and diffusion anisotropy at each time-point within the ventroposterolateral and ventroposteromedial thalamus were used as predictor variables in multi-variable logistic regression models to distinguish rats with and without epilepsy. RESULTS: Twenty-nine percent (28/98) of the rats with traumatic brain injury (TBI) developed epilepsy. The best-performing logistic regression model utilized the D2 and D7 T2 relaxation time as well as the D7 diffusion tensor data. The model distinguished rats with and without epilepsy (Bonferroni-corrected p-value < .001) with a cross-validated concordance statistic of 0.74 (95% confidence interval [CI] 0.60-0.84). In a cross-validated classification test, the model exhibited 54% sensitivity and 91% specificity, enriching the epilepsy rate within the study population from the expected 29% to 71%. A model using the D2 T2 data only resulted in a 73% enriched epilepsy rate (regression p-value .007, cross-validated concordance 0.70, 95% CI 0.56-0.80, sensitivity 29%, specificity 96%). SIGNIFICANCE: An MRI parameter set reporting on acute and subacute neuropathologic changes common to experimental and human TBI presents a diagnostic biomarker for post-traumatic epileptogenesis. Significant enrichment of the study population was achieved even when using a single time-point measurement, producing an expected epilepsy rate of 73%.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia , Animales , Biomarcadores , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Epilepsia/diagnóstico por imagen , Epilepsia/etiología , Humanos , Masculino , Pronóstico , Ratas , Ratas Sprague-Dawley , Tálamo/diagnóstico por imagen
3.
J Neurotrauma ; 37(7): 924-938, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31650880

RESUMEN

Traumatic brain injury (TBI) causes damage to the hypothalamo-hypophyseal axis, leading to endocrine dysregulation in up to 40% of TBI patients. Hence, there is an urgent need to identify non-invasive biomarkers for TBI-associated hypothalamo-hypophyseal pathology. Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel hypothalamic protein expressed in both rat and human brain. Our objective was to investigate the effect of acquired brain injury on plasma SRPX2 protein levels and SRPX2 expression in the brain. We induced severe lateral fluid-percussion injury in adult male rats and investigated changes in SRPX2 expression at 2 h, 6 h, 24 h, 48 h, 72 h, 5 days, 7 days, 14 days, 1 month, and 3 months post-injury. The plasma SRPX2 level was assessed by Western blot analysis. Hypothalamic SRPX2-immunoreactive neuronal numbers were estimated from immunostained preparations. At 2 h post-TBI, plasma SRPX2 levels were markedly decreased compared with the naïve group (area under the curve = 1.00, p < 0.05). Severe TBI caused a reduction in the number of hypothalamic SRPX2-immunoreactive neurons bilaterally at 2 h post-TBI compared with naïve group (5032 ± 527 vs. 9440 ± 351, p < 0.05). At 1 month after severe TBI, however, the brain and plasma SRPX2 levels were comparable between the TBI and naïve groups (p > 0.05). Unsupervised hierarchical clustering using SRPX2 expression differentiated animals into injured and uninjured clusters. Our findings indicate that TBI leads to an acute reduction in SRPX2 protein expression and reduced plasma SRPX2 level may serve as a candidate biomarker of hypothalamic injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Regulación hacia Abajo/fisiología , Hipotálamo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Hipotálamo/patología , Masculino , Ratas , Ratas Sprague-Dawley
4.
Sci Rep ; 9(1): 20208, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882899

RESUMEN

Progress in the preclinical and clinical development of neuroprotective and antiepileptogenic treatments for traumatic brain injury (TBI) necessitates the discovery of prognostic biomarkers for post-injury outcome. Our previous mRNA-seq data revealed a 1.8-2.5 fold increase in clusterin mRNA expression in lesioned brain areas in rats with lateral fluid-percussion injury (FPI)-induced TBI. On this basis, we hypothesized that TBI leads to increases in the brain levels of clusterin protein, and consequently, increased plasma clusterin levels. For evaluation, we induced TBI in adult male Sprague-Dawley rats (n = 80) by lateral FPI. We validated our mRNA-seq findings with RT-qPCR, confirming increased clusterin mRNA levels in the perilesional cortex (FC 3.3, p < 0.01) and ipsilateral thalamus (FC 2.4, p < 0.05) at 3 months post-TBI. Immunohistochemistry revealed a marked increase in extracellular clusterin protein expression in the perilesional cortex and ipsilateral hippocampus (7d to 1 month post-TBI), and ipsilateral thalamus (14d to 12 months post-TBI). In the thalamus, punctate immunoreactivity was most intense around activated microglia and mitochondria. Enzyme-linked immunoassays indicated that an acute 15% reduction, rather than an increase in plasma clusterin levels differentiated animals with TBI from sham-operated controls (AUC 0.851, p < 0.05). Our findings suggest that plasma clusterin is a candidate biomarker for acute TBI diagnosis.


Asunto(s)
Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Clusterina/metabolismo , ARN Mensajero/metabolismo , Animales , Biomarcadores/sangre , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/genética , Corteza Cerebral/metabolismo , Clusterina/sangre , Clusterina/genética , Hipocampo/metabolismo , Inmunohistoquímica/métodos , Cinética , Masculino , ARN Mensajero/sangre , ARN Mensajero/genética , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Tálamo/metabolismo , Factores de Tiempo
5.
Neuroscience ; 415: 184-200, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31362033

RESUMEN

Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel hypothalamic protein and a ligand of the urokinase-type plasminogen activator receptor (uPAR), which is essential for proteolysis of extracellular matrix and tissue remodeling after an insult to the brain. However, little is known about regulation of SRPX2. Our objective was to investigate if SRPX2 expression is altered by (i) the deficiency of uPAR or uPA (urokinase-type plasminogen activator), and (ii) traumatic brain injury (TBI). SRPX2 expression was assessed in wild type (Wt), Plaur-/- (uPAR-deficient), and Plau-/- (uPA-deficient) mice, with and without controlled cortical impact injury (CCI). The number of SRPX2+ neurons in hypothalamus was comparable to that in Wt littermates in Plaur-/- (2985 ±â€¯138 vs. 2890 ±â€¯92, p > 0.05) and Plau-/- mice (2180 ±â€¯232 vs. 2027 ±â€¯77, p > 0.05). The number of hypothalamic SRPX2+ neurons in the Wt-CCI group was comparable to that in controls (3645 ±â€¯288 vs. 3385 ±â€¯192, p > 0.05). Hypothalamic, hippocampal and thalamic Srpx2 gene expression was unaltered after TBI. However, at 4 days post-TBI Srpx2 gene expression was upregulated in the perilesional cortex of Plau-/--CCI mice up to 123% of that in the sham group (p < 0.05). Unsupervised hierarchical clustering using SRPX2 expression did not identify genotype or injury-specific clusters. Our data demonstrate that SRPX2 expression in the hypothalamus is resistant to genetic deficiencies in the urokinase-system or to the hypothalamus-affecting TBI. The contribution of elevated Srpx2 gene expression in perilesional cortex to post-TBI recovery process, however, requires further exploration.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/biosíntesis , Animales , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Expresión Génica , Genotipo , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/deficiencia , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Transducción de Señal
6.
Neuroimage ; 200: 250-258, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31201986

RESUMEN

A key event in the pathophysiology of traumatic brain injury (TBI) is the influx of substantial amounts of Ca2+ into neurons, particularly in the thalamus. Detection of this calcium influx in vivo would provide a window into the biochemical mechanisms of TBI with potentially significant clinical implications. In the present work, our central hypothesis was that the Ca2+ influx could be imaged in vivo with the relatively recent MRI technique of quantitative susceptibility mapping (QSM). Wistar rats were divided into five groups: naive controls, sham-operated experimental controls, single mild TBI, repeated mild TBI, and single severe TBI. We employed the lateral fluid percussion injury (FPI) model, which replicates clinical TBI without skull fracture, performed 9.4 Tesla MRI with a 3D multi-echo gradient-echo sequence at weeks 1 and 4 post-injury, computed susceptibility maps using V-SHARP and the QUASAR-HEIDI technique, and performed histology. Sham, experimental controls animals, and injured animals did not demonstrate calcifications at 1 week after the injury. At week 4, calcifications were found in the ipsilateral thalamus of 25-50% of animals after a single TBI and 83% of animals after repeated mild TBI. The location and appearance of calcifications on stained sections was consistent with the appearance on the in vivo susceptibility maps (correlation of volumes: r = 0.7). Our findings suggest that persistent calcium deposits represent a primary pathology of repeated injury and that FPI-QSM has the potential to become a sensitive tool for studying pathophysiology related to mild TBI in vivo.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Calcio/metabolismo , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Tálamo/diagnóstico por imagen , Animales , Biomarcadores , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Calcinosis/metabolismo , Calcinosis/patología , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Tálamo/metabolismo , Tálamo/patología
7.
J Comp Neurol ; 526(11): 1806-1819, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29663392

RESUMEN

Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel protein associated with language development, synaptic plasticity, tissue remodeling, and angiogenesis. We investigated the expression and spatial localization of SRPX2 in normal mouse, rat, monkey, and human brain using in situ hybridization and immunohistochemistry. Antibody specificity was determined using in vitro siRNA based silencing of SRPX2. Cell type-specific expression was verified by double-labeling with oxytocin or vasopressin. Western blot was used to detect SRPX2 protein in rat and human plasma and cerebrospinal fluid. Unexpectedly, SRPX2 mRNA expression levels were strikingly higher in the hypothalamus as compared to the cortex. All SRPX2 immunoreactive (ir) neurons were localized in the hypothalamic paraventricular, periventricular, and supraoptic nuclei in mouse, rat, monkey, and human brain. SRPX2 colocalized with vasopressin or oxytocin in paraventricular and supraoptic neurons. Hypothalamic SRPX2-ir positive neurons gave origin to dense projections traveling ventrally and caudally toward the hypophysis. Intense axonal varicosities and terminal arborizations were identified in the rat and human neurohypophysis. SRPX2-ir cells were also found in the adenohypophysis. Light SRPX2-ir projections were observed in the dorsal and ventral raphe, locus coeruleus, and the nucleus of the solitary tract in mouse, rat and monkey. SRPX2 protein was also detected in plasma and CSF. Our data revealed intense phylogenetically conserved expression of SRPX2 protein in distinct hypothalamic nuclei and the hypophysis, suggesting its active role in the hypothalamo-pituitary axis. The presence of SRPX2 protein in the plasma and CSF suggests that some of its functions depend on secretion into body fluids.


Asunto(s)
Secuencia Conservada , Sistema Hipotálamo-Hipofisario/metabolismo , Proteínas de la Membrana/genética , Anciano , Anciano de 80 o más Años , Animales , Química Encefálica , Línea Celular , Corteza Cerebral/metabolismo , Humanos , Hipotálamo/metabolismo , Macaca , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas de Neoplasias , Proteínas del Tejido Nervioso , Filogenia , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley
8.
Epilepsy Res ; 136: 18-34, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28753497

RESUMEN

Treatment of TBI remains a major unmet medical need, with 2.5 million new cases of traumatic brain injury (TBI) each year in Europe and 1.5 million in the USA. This single-center proof-of-concept preclinical study tested the hypothesis that pharmacologic neurostimulation with proconvulsants, either atipamezole, a selective α2-adrenoceptor antagonist, or the cannabinoid receptor 1 antagonist SR141716A, as monotherapy would improve functional recovery after TBI. A total of 404 adult Sprague-Dawley male rats were randomized into two groups: sham-injured or lateral fluid-percussion-induced TBI. The rats were treated with atipamezole (started at 30min or 7 d after TBI) or SR141716A (2min or 30min post-TBI) for up to 9 wk. Total follow-up time was 14 wk after treatment initiation. Outcome measures included motor (composite neuroscore, beam-walking) and cognitive performance (Morris water-maze), seizure susceptibility, spontaneous seizures, and cortical and hippocampal pathology. All injured rats exhibited similar impairment in the neuroscore and beam-walking tests at 2 d post-TBI. Atipamezole treatment initiated at either 30min or 7 d post-TBI and continued for 9 wk via subcutaneous osmotic minipumps improved performance in both the neuroscore and beam-walking tests, but not in the Morris water-maze spatial learning and memory test. Atipamezole treatment initiated at 7 d post-TBI also reduced seizure susceptibility in the pentylenetetrazol test 14 wk after treatment initiation, although it did not prevent the development of epilepsy. SR141716A administered as a single dose at 2min post-TBI or initiated at 30min post-TBI and continued for 9 wk had no recovery-enhancing or antiepileptogenic effects. Mechanistic studies to assess the α2-adrenoceptor subtype specificity of the disease-modifying effects of atipametzole revealed that genetic ablation of α2A-noradrenergic receptor function in Adra2A mice carrying an N79P point mutation had antiepileptogenic effects after TBI. On the other hand, blockade of α2C-adrenoceptors using the receptor subtype-specific antagonist ORM-12741 had no favorable effects on the post-TBI outcome. Finally, to assess whether regulation of the post-injury inflammatory response by atipametzole in glial cells contributed to a favorable outcome, we investigated the effect of atipamezole on spontaneous and/or lipopolysaccharide-stimulated astroglial or microglial cytokine release in vitro. We observed no effect. Our data demonstrate that a 9-wk administration of α2A-noradrenergic antagonist, atipamezole, is recovery-enhancing after TBI.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia Postraumática/tratamiento farmacológico , Imidazoles/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Axones/efectos de los fármacos , Axones/fisiología , Temperatura Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Evaluación Preclínica de Medicamentos , Epilepsia Postraumática/fisiopatología , Epilepsia Postraumática/psicología , Masculino , Actividad Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Fármacos Neuroprotectores/farmacología , Piperidinas/farmacología , Prueba de Estudio Conceptual , Pirazoles/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Rimonabant , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Memoria Espacial/efectos de los fármacos
9.
Neuropharmacology ; 88: 122-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25229716

RESUMEN

Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, ß2, ß3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, ß2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei.


Asunto(s)
Lesiones Encefálicas/metabolismo , Hipocampo/metabolismo , Receptores de GABA-A/metabolismo , Tálamo/metabolismo , Animales , Autorradiografía , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Lateralidad Funcional , Expresión Génica , Hipocampo/patología , Inmunohistoquímica , Hibridación in Situ , Captura por Microdisección con Láser , Masculino , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Tálamo/patología
10.
Lancet Neurol ; 13(9): 949-60, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25127174

RESUMEN

Translation of successful target and compound validation studies into clinically effective therapies is a major challenge, with potential for costly clinical trial failures. This situation holds true for the epilepsies-complex diseases with different causes and symptoms. Although the availability of predictive animal models has led to the development of effective antiseizure therapies that are routinely used in clinical practice, showing that translation can be successful, several important unmet therapeutic needs still exist. Available treatments do not fully control seizures in a third of patients with epilepsy, and produce substantial side-effects. No treatment can prevent the development of epilepsy in at-risk patients or cure patients with epilepsy. And no specific treatment for epilepsy-associated comorbidities exists. To meet these demands, a redesign of translational approaches is urgently needed.


Asunto(s)
Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/normas , Epilepsia/tratamiento farmacológico , Animales , Anticonvulsivantes/efectos adversos , Humanos
11.
Epilepsia ; 54 Suppl 4: 13-23, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909850

RESUMEN

The search for new treatments for seizures, epilepsies, and their comorbidities faces considerable challenges. This is due in part to gaps in our understanding of the etiology and pathophysiology of most forms of epilepsy. An additional challenge is the difficulty in predicting the efficacy, tolerability, and impact of potential new treatments on epilepsies and comorbidities in humans, using the available resources. Herein we provide a summary of the discussions and proposals of the Working Group 2 as presented in the Joint American Epilepsy Society and International League Against Epilepsy Translational Workshop in London (September 2012). We propose methodologic and reporting practices that will enhance the uniformity, reliability, and reporting of early stage preclinical studies with animal seizure and epilepsy models that aim to develop and evaluate new therapies for seizures or epilepsies, using multidisciplinary approaches. The topics considered include the following: (1) implementation of better study design and reporting practices; (2) incorporation in the study design and analysis of covariants that may influence outcomes (including species, age, sex); (3) utilization of approaches to document target relevance, exposure, and engagement by the tested treatment; (4) utilization of clinically relevant treatment protocols; (5) optimization of the use of video-electroencephalography (EEG) recordings to best meet the study goals; and (6) inclusion of outcome measures that address the tolerability of the treatment or study end points apart from seizures. We further discuss the different expectations for studies aiming to meet regulatory requirements to obtain approval for clinical testing in humans. Implementation of the rigorous practices discussed in this report will require considerable investment in time, funds, and other research resources, which may create challenges for academic researchers seeking to contribute to epilepsy therapy discovery and development. We propose several infrastructure initiatives to overcome these barriers.


Asunto(s)
Anticonvulsivantes/efectos adversos , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Drogas en Investigación/efectos adversos , Drogas en Investigación/uso terapéutico , Epilepsia/tratamiento farmacológico , Investigación Biomédica Traslacional , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Electroencefalografía/efectos de los fármacos , Humanos , Proyectos de Investigación , Grabación en Video
12.
Epilepsia ; 54 Suppl 4: 35-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909852

RESUMEN

Several preclinical proof-of-concept studies have provided evidence for positive treatment effects on epileptogenesis. However, none of these hypothetical treatments has advanced to the clinic. The experience in other fields of neurology such as stroke, Alzheimer's disease, or amyotrophic lateral sclerosis has indicated several problems in the design of preclinical studies, which likely contribute to failures in translating the positive preclinical data to the clinic. The Working Group on "Issues related to development of antiepileptogenic therapies" of the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES) has considered the possible problems that arise when moving from proof-of-concept antiepileptogenesis (AEG) studies to preclinical AEG trials, and eventually to clinical AEG trials. This article summarizes the discussions and provides recommendations on how to design a preclinical AEG monotherapy trial in adult animals. We specifically address study design, animal and model selection, number of studies needed, issues related to administration of the treatment, outcome measures, statistics, and reporting. In addition, we give recommendations for future actions to advance the preclinical AEG testing.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Drogas en Investigación/uso terapéutico , Adulto , Animales , Anticonvulsivantes/efectos adversos , Niño , Enfermedad Crónica , Ensayos Clínicos Controlados como Asunto , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Aprobación de Drogas , Resistencia a Medicamentos , Drogas en Investigación/efectos adversos , Medicina Basada en la Evidencia , Humanos , National Institute of Neurological Disorders and Stroke (U.S.) , Estados Unidos
13.
Epilepsia ; 54 Suppl 4: 61-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909854

RESUMEN

A biomarker is defined as an objectively measured characteristic of a normal or pathologic biologic process. Identification and proper validation of biomarkers of epileptogenesis (the development of epilepsy) and ictogenesis (the propensity to generate spontaneous seizures) might predict the development of an epilepsy condition; identify the presence and severity of tissue capable of generating spontaneous seizures; measure progression after the condition is established; and determine pharmacoresistance. Such biomarkers could be used to create animal models for more cost-effective screening of potential antiepileptogenic and antiseizure drugs and devices, and to reduce the cost of clinical trials by enriching the trial population, and acting as surrogate markers to shorten trial duration. The objectives of the biomarker subgroup for the London Workshop were to define approaches for identifying possible biomarkers for these purposes. Research to identify reliable biomarkers may also reveal underlying mechanisms that could serve as therapeutic targets for the development of new antiepileptogenic and antiseizure compounds.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Biomarcadores/sangre , Descubrimiento de Drogas , Drogas en Investigación/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Animales , Anticonvulsivantes/efectos adversos , Anticonvulsivantes/economía , Encéfalo/fisiopatología , Ensayos Clínicos como Asunto/economía , Análisis Costo-Beneficio , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/economía , Resistencia a Medicamentos , Drogas en Investigación/efectos adversos , Drogas en Investigación/economía , Electroencefalografía/efectos de los fármacos , Epilepsia/etiología , Epilepsia/prevención & control , Humanos , Factores Desencadenantes
14.
Epilepsia ; 53(3): 571-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22292566

RESUMEN

Preclinical research has facilitated the discovery of valuable drugs for the symptomatic treatment of epilepsy. Yet, despite these therapies, seizures are not adequately controlled in a third of all affected individuals, and comorbidities still impose a major burden on quality of life. The introduction of multiple new therapies into clinical use over the past two decades has done little to change this. There is an urgent demand to address the unmet clinical needs for: (1) new symptomatic antiseizure treatments for drug-resistant seizures with improved efficacy/tolerability profiles, (2) disease-modifying treatments that prevent or ameliorate the process of epileptogenesis, and (3) treatments for the common comorbidities that contribute to disability in people with epilepsy. New therapies also need to address the special needs of certain subpopulations, that is, age- or gender-specific treatments. Preclinical development in these treatment areas is complex due to heterogeneity in presentation and etiology, and may need to be formulated with a specific seizure, epilepsy syndrome, or comorbidity in mind. The aim of this report is to provide a framework that will help define future guidelines that improve and standardize the design, reporting, and validation of data across preclinical antiepilepsy therapy development studies targeting drug-resistant seizures, epileptogenesis, and comorbidities.


Asunto(s)
Anticonvulsivantes/farmacología , Evaluación Preclínica de Medicamentos/normas , Epilepsia/tratamiento farmacológico , Investigación Biomédica Traslacional/normas , Animales , Anticonvulsivantes/aislamiento & purificación , Comorbilidad/tendencias , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Resistencia a Medicamentos/fisiología , Epilepsia/epidemiología , Humanos , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/tendencias
15.
Neuroimage ; 30(1): 130-5, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16246593

RESUMEN

Mn(2+)-enhanced magnetic resonance imaging (MEMRI) was used to characterize activity-dependent plasticity in the mossy fiber pathway after intraperitoneal kainic acid (KA) injection. Enhancement of the MEMRI signal in the dentate gyrus and the CA3 subregion of the hippocampus was evident 3 to 5 days after injection of MnCl(2) into the entorhinal cortex both in control and KA-injected rats. In volume-rendered three-dimensional reconstructions, Mn(2+)-induced signal enhancement revealed the extent of the mossy fiber pathway throughout the septotemporal axis of the dentate gyrus. An increase in the number of Mn(2+)-enhanced pixels in the dentate gyrus and CA3 subfield of rats with KA injection correlated (P < 0.05) with histologically verified mossy fiber sprouting. These data demonstrate that MEMRI can be used to detect specific changes at the cellular level during activity-dependent plasticity in vivo. The present findings also suggest that MEMRI signal changes can serve as an imaging marker of epileptogenesis.


Asunto(s)
Encéfalo/anatomía & histología , Cloruros , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso , Fibras Nerviosas/ultraestructura , Vías Nerviosas/anatomía & histología , Plasticidad Neuronal/fisiología , Animales , Axones/diagnóstico por imagen , Mapeo Encefálico , Giro Dentado/anatomía & histología , Dominancia Cerebral/fisiología , Corteza Entorrinal/anatomía & histología , Ácido Kaínico , Masculino , Fibras Musgosas del Hipocampo/ultraestructura , Red Nerviosa/anatomía & histología , Regeneración Nerviosa/fisiología , Neuronas/diagnóstico por imagen , Ratas , Tálamo/anatomía & histología , Ultrasonografía
16.
Epilepsia ; 45(9): 1024-34, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15329065

RESUMEN

PURPOSE: This study examined the hypothesis that neurodegeneration continues after status epilepticus (SE) ends and that the severity of damage at the early phase of the epileptogenic process predicts the outcome of epilepsy in a long-term follow-up. METHODS: SE was induced in rats by electrical stimulation of the amygdala, and the progression of structural alterations was monitored with multiparametric magnetic resonance imaging (MRI). Absolute T2, T1rho, and diffusion (Dav) images were acquired from amygdala, piriform cortex, thalamus, and hippocampus for < or = 4.5 months after SE. Frequency and type of spontaneous seizures were monitored with video-electroencephalography recordings. Histologic damage was assessed from Nissl, Timm, and Fluoro-Jade B preparations at 8 months. RESULTS: At the acute phase (2 days after SE induction), quantitative MRI revealed increased T2, T1rho, and Dav values in the primary focal area (amygdala), reflecting disturbed water homeostasis and possible early structural damage. Pathologic T2 and T1rho were observed in mono- or polysynaptically connected regions, including the piriform cortex, midline thalamus, and hippocampus. The majority of acute MRI abnormalities were reversed by 9 days after SE. In later time points (> 20 days after induction), both the T1rho and diffusion MRI revealed secondarily affected areas, most predominantly in the amygdala and hippocampus. At this time, animals began to have spontaneous seizures. The initial pathology revealed by MRI had a low predictive value for the subsequent severity of epilepsy and tissue damage. CONCLUSIONS: The results demonstrate progressive neurodegeneration after SE in the amygdala and the hippocampus and stress the need for continued administration of neuroprotectants in the treatment of SE even after electrographic seizure activity has ceased.


Asunto(s)
Encéfalo/patología , Epilepsia del Lóbulo Temporal/patología , Imagen por Resonancia Magnética , Estado Epiléptico/patología , Amígdala del Cerebelo/fisiopatología , Animales , Encéfalo/fisiopatología , Estimulación Eléctrica , Electroencefalografía/estadística & datos numéricos , Epilepsia del Lóbulo Temporal/diagnóstico , Epilepsia del Lóbulo Temporal/fisiopatología , Estudios de Seguimiento , Hipocampo , Estudios Longitudinales , Masculino , Monitoreo Fisiológico , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Estado Epiléptico/etiología , Estado Epiléptico/fisiopatología , Tálamo/patología , Tálamo/fisiopatología , Grabación de Cinta de Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA