Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Elife ; 122023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36718990

RESUMEN

The tuberal hypothalamus controls life-supporting homeostatic processes, but despite its fundamental role, the cells and signalling pathways that specify this unique region of the central nervous system in embryogenesis are poorly characterised. Here, we combine experimental and bioinformatic approaches in the embryonic chick to show that the tuberal hypothalamus is progressively generated from hypothalamic floor plate-like cells. Fate-mapping studies show that a stream of tuberal progenitors develops in the anterior-ventral neural tube as a wave of neuroepithelial-derived BMP signalling sweeps from anterior to posterior through the hypothalamic floor plate. As later-specified posterior tuberal progenitors are generated, early specified anterior tuberal progenitors become progressively more distant from these BMP signals and differentiate into tuberal neurogenic cells. Gain- and loss-of-function experiments in vivo and ex vivo show that BMP signalling initiates tuberal progenitor specification, but must be eliminated for these to progress to anterior neurogenic progenitors. scRNA-Seq profiling shows that tuberal progenitors that are specified after the major period of anterior tuberal specification begin to upregulate genes that characterise radial glial cells. This study provides an integrated account of the development of the tuberal hypothalamus.


Asunto(s)
Hipotálamo , Neurogénesis , Animales , Hipotálamo/metabolismo , Neurogénesis/fisiología , Transducción de Señal , Pollos
2.
Cell Rep ; 38(3): 110251, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045288

RESUMEN

The hypothalamus regulates many innate behaviors, but its development remains poorly understood. Here, we used single-cell RNA sequencing (RNA-seq) and hybridization chain reaction (HCR) to profile multiple stages of early hypothalamic development in the chick. Hypothalamic neuroepithelial cells are initially induced from prethalamic-like cells. Two distinct hypothalamic progenitor populations then emerge and give rise to tuberal and mammillary/paraventricular hypothalamic cells. At later stages, the regional organization of the chick and mouse hypothalamus is highly similar. We identify selective markers for major subdivisions of the developing chick hypothalamus and many previously uncharacterized candidate regulators of hypothalamic induction, regionalization, and neurogenesis. As proof of concept for the power of the dataset, we demonstrate that prethalamus-derived follistatin inhibits hypothalamic induction. This study clarifies the organization of the nascent hypothalamus and identifies molecular mechanisms that may control its induction and subsequent development.


Asunto(s)
Hipotálamo/embriología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Embrión de Pollo , RNA-Seq , Análisis de la Célula Individual
3.
Int J Dev Biol ; 65(4-5-6): 195-205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32930382

RESUMEN

Rax (Rx) genes encode paired-type homeodomain-containing transcription factors present in virtually all metazoan groups. In vertebrates, studies in fish, amphibian, chick and mouse models have revealed that these genes play important roles in the development of structures located at the anterior portion of the central nervous system, in particular the eyes, the hypothalamus and the pituitary gland. In addition, human patients with eye and brain defects carry mutations in the two human Rax paralogues, RAX and RAX2. Here, we review work done in the last years on Rax genes, focusing especially on the function that mouse Rax and its zebrafish homologue, rx3, play in hypothalamic and pituitary development. Work on both of these model organisms indicate that Rax genes are necessary for the patterning, growth and differentiation of the hypothalamus, in particular the ventro-tuberal and dorso-anterior hypothalamus, where they effect their action by controlling expression of the secreted signalling protein, Sonic hedgehog (Shh). In addition, Rax/rx3 mutations disturb the development of the pituitary gland, mimicking phenotypes observed in human subjects carrying mutations in the RAX gene. Thus, along with their crucial role in eye morphogenesis, Rax genes play a conserved role in the development of the hypothalamus and adjacent structures in the vertebrate clade.


Asunto(s)
Proteínas del Ojo , Proteínas de Homeodominio , Hipotálamo/crecimiento & desarrollo , Hipófisis/crecimiento & desarrollo , Factores de Transcripción , Pez Cebra , Animales , Proteínas del Ojo/fisiología , Proteínas Hedgehog/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Ratones , Factores de Transcripción/fisiología , Pez Cebra/genética , Pez Cebra/fisiología
4.
J Neuroendocrinol ; 31(5): e12727, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31050853

RESUMEN

The adult hypothalamus is subdivided into distinct domains: pre-optic, anterior, tuberal and mammillary. Each domain harbours an array of neurones that act together to regulate homeostasis. The embryonic origins and the development of hypothalamic neurones, however, remain enigmatic. Here, we summarise recent studies in model organisms that challenge current views of hypothalamic development, which traditionally have attempted to map adult domains to correspondingly located embryonic domains. Instead, new studies indicate that hypothalamic neurones arise from progenitor cells that undergo anisotropic growth, expanding to a greater extent than other progenitors, and grow in different dimensions. We describe in particular how a multipotent Shh/ Fgf10-expressing progenitor population gives rise to progenitors throughout the basal hypothalamus that grow anisotropically and sequentially: first, a subset displaced rostrally give rise to anterior-ventral/tuberal neuronal progenitors; then a subset displaced caudally give rise to mammillary neuronal progenitors; and, finally, a subset(s) displaced ventrally give rise to tuberal infundibular glial progenitors. As this occurs, stable populations of Shh+ive and Fgf10+ive progenitors form. We describe current understanding of the mechanisms that induce Shh+ive /Fgf10+ive progenitors and begin to direct their differentiation to anterior-ventral/tuberal neuronal progenitors, mammillary neuronal progenitors and tuberal infundibular progenitors. Taken together, these studies suggest a new model for hypothalamic development that we term the "anisotropic growth model". We discuss the implications of the model for understanding the origins of adult hypothalamic neurones.


Asunto(s)
Hipotálamo/crecimiento & desarrollo , Animales , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Modelos Neurológicos , Células-Madre Neurales/fisiología , Neuronas/fisiología
5.
Development ; 144(18): 3278-3288, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28807896

RESUMEN

Classical descriptions of the hypothalamus divide it into three rostro-caudal domains but little is known about their embryonic origins. To investigate this, we performed targeted fate-mapping, molecular characterisation and cell cycle analyses in the embryonic chick. Presumptive hypothalamic cells derive from the rostral diencephalic ventral midline, lie above the prechordal mesendoderm and express Fgf10Fgf10+ progenitors undergo anisotropic growth: those displaced rostrally differentiate into anterior cells, then those displaced caudally differentiate into mammillary cells. A stable population of Fgf10+ progenitors is retained within the tuberal domain; a subset of these gives rise to the tuberal infundibulum - the precursor of the posterior pituitary. Pharmacological approaches reveal that Shh signalling promotes the growth and differentiation of anterior progenitors, and also orchestrates the development of the infundibulum and Rathke's pouch - the precursor of the anterior pituitary. Together, our studies identify a hypothalamic progenitor population defined by Fgf10 and highlight a role for Shh signalling in the integrated development of the hypothalamus and pituitary.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/citología , Hipotálamo/embriología , Células Madre/citología , Animales , Anisotropía , Proliferación Celular , Embrión de Pollo , Pollos , Diencéfalo/embriología , Endodermo/embriología , Proteínas Hedgehog/metabolismo , Mesodermo/embriología , Modelos Biológicos , Sistemas Neurosecretores/metabolismo , Transducción de Señal , Somitos/embriología , Somitos/metabolismo , Células Madre/metabolismo , Regulación hacia Arriba
6.
Hum Mol Genet ; 26(11): 1992-2005, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334933

RESUMEN

Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3+ hypothalamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1b+ neurons, implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis, develop abnormally, and rx3-derived pomc+ neurons are disorganised. Abnormal hypothalamic development is associated with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for the correct functioning of the HPA/HPI axis.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Codón sin Sentido , Hormona Liberadora de Corticotropina/metabolismo , Hidrocortisona , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/embriología , Hipotálamo/metabolismo , Larva/metabolismo , Proteínas del Tejido Nervioso/genética , Hipófisis , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
7.
Compr Physiol ; 6(2): 623-43, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27065164

RESUMEN

The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.


Asunto(s)
Hipotálamo/embriología , Células Neuroendocrinas/citología , Neurogénesis , Animales , Humanos , Hipotálamo/citología , Hipotálamo/metabolismo , Hipotálamo/fisiología , Células Neuroendocrinas/metabolismo
8.
Neurosci Lett ; 562: 108-13, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24701642

RESUMEN

The hypothalamus plays a key role in homeostasis. Many of its effector functions are mediated through neuroendocrine neurons whose axons project to the median eminence or posterior pituitary. Understanding the guidance of hypothalamic neuroendocrine axons in development therefore adds important insight into hypothalamic function. Previous studies show that FGF10 deriving from the medial ventral midline of the hypothalamus plays an important role in attracting developing neuroendocrine axons. Here we show that Shh and BMP7, which are expressed in the anterior and posterior hypothalamic ventral midline respectively, together repel hypothalamic axons towards the medial ventral midline.


Asunto(s)
Proteínas Aviares/metabolismo , Axones/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Animales , Proteínas Aviares/genética , Proteína Morfogenética Ósea 7/genética , Embrión de Pollo , Pollos , Proteínas Hedgehog/genética , Neurogénesis/fisiología , Neuronas/metabolismo
9.
Curr Top Dev Biol ; 106: 49-88, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24290347

RESUMEN

The medial hypothalamus is composed of nuclei of the tuberal hypothalamus, the paraventricular nucleus of the anterior hypothalamus, and the neurohypophysis. Its arrangement, around the third ventricle of the brain, above the adenohypophysis, and in direct contact with the vasculature, means that it serves as an interface with circulating systems, providing a key conduit through which the brain can sample, and control, peripheral body systems. Through these interfaces, and interactions with other parts of the brain, the medial hypothalamus centrally governs diverse homeostatic processes, including energy and fluid balance, stress responses, growth, and reproductive behaviors. Here, we summarize recent studies that reveal how the diverse cell types within the medial hypothalamus are assembled in an integrated manner to enable its later function. In particular, we discuss how the temporally protracted operation of signaling pathways and transcription factors governs the appearance and regionalization of the hypothalamic primordium from the prosencephalic territory, the specification and differentiation of progenitors into neurons in organized nuclei, and the establishment of interfaces. Through analyses of mouse, chick, and zebrafish, a picture emerges of an evolutionarily conserved and highly coordinated developmental program. Early indications suggest that deregulation of this program may underlie complex human pathological conditions and dysfunctional behaviors, including stress and eating disorders.


Asunto(s)
Hipotálamo Medio/fisiología , Hipotálamo/fisiología , Neurohipófisis/fisiología , Transducción de Señal/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Hipotálamo Medio/crecimiento & desarrollo , Hipotálamo Medio/metabolismo , Modelos Biológicos , Neurogénesis/genética , Neurogénesis/fisiología , Neurohipófisis/crecimiento & desarrollo , Neurohipófisis/metabolismo , Transducción de Señal/genética
10.
Neurosci Lett ; 553: 104-9, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23978511

RESUMEN

Hypothalamus plays a key role in homeostasis, and functions of the hypothalamus depend on the accurate trajectory of hypothalamic neuroendocrine axons. Thus, understanding the guidance of hypothalamic neuroendocrine axons is crucial for knowing how hypothalamus works. Previous studies suggest FGF10 deriving from the medial ventral midline of the hypothalamus plays an important role in axon guidance of the developing hypothalamus. Here we show that Shh and BMP7, which are from the anterior and posterior hypothalamic ventral midline respectively, together repel hypothalamic axons towards the medial ventral midline.


Asunto(s)
Axones/fisiología , Proteína Morfogenética Ósea 7/fisiología , Proteínas Hedgehog/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/fisiología , Animales , Embrión de Pollo , Sistema Hipotálamo-Hipofisario/embriología , Sistema Hipotálamo-Hipofisario/ultraestructura , Hipotálamo/embriología , Hipotálamo/ultraestructura
11.
J Neurosci ; 30(45): 14925-30, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068293

RESUMEN

The embryonic diencephalon gives rise to the vertebrate thalamus and hypothalamus, which play essential roles in sensory information processing and control of physiological homeostasis and behavior, respectively. In this review, we present new steps toward characterizing the molecular pathways that control development of these structures, based on findings in a variety of model organisms. We highlight advances in understanding how early regional patterning is orchestrated through the action of secreted signaling molecules such as Sonic hedgehog and fibroblast growth factors. We address the role of individual transcription factors in control of the regional identity and neural differentiation within the developing diencephalon, emphasizing the contribution of recent large-scale gene expression studies in providing an extensive catalog of candidate regulators of hypothalamic neural cell fate specification. Finally, we evaluate the molecular mechanisms involved in the experience-dependent development of both thalamo-cortical and hypothalamic neural circuitry.


Asunto(s)
Hipotálamo/embriología , Red Nerviosa/embriología , Neuronas/metabolismo , Tálamo/embriología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Hipotálamo/metabolismo , Red Nerviosa/metabolismo , Tálamo/metabolismo
12.
Development ; 135(20): 3325-31, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18787065

RESUMEN

In the developing chick hypothalamus, Shh and BMPs are expressed in a spatially overlapping, but temporally consecutive, manner. Here, we demonstrate how the temporal integration of Shh and BMP signalling leads to the late acquisition of Pax7 expression in hypothalamic progenitor cells. Our studies reveal a requirement for a dual action of BMPs: first, the inhibition of GliA function through Gli3 upregulation; and second, activation of a Smad5-dependent BMP pathway. Previous studies have shown a requirement for spatial antagonism of Shh and BMPs in early CNS patterning; here, we propose that neural pattern elaboration can be achieved through a versatile temporal antagonism between Shh and BMPs.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Hipotálamo/embriología , Factor de Transcripción PAX7/metabolismo , Transactivadores/metabolismo , Animales , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hipotálamo/metabolismo , Hibridación in Situ , Modelos Biológicos , Técnicas de Cultivo de Órganos , Factor de Transcripción PAX7/genética , Transducción de Señal , Proteína Smad5/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo , Transactivadores/genética
13.
Dev Cell ; 11(6): 873-85, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17141161

RESUMEN

A central challenge in embryonic development is to understand how growth and pattern are coordinated to direct emerging new territories during morphogenesis. Here, we report on a signaling cascade that links cell proliferation and fate, promoting formation of a distinct progenitor domain within the developing chick hypothalamus. We show that the downregulation of Shh in floor plate-like cells in the forebrain governs their progression to a distinctive, proliferating hypothalamic progenitor domain. Shh downregulation occurs via a local BMP-Tbx2 pathway, Tbx2 acting to repress Shh expression. We show in vivo and in vitro that forced maintenance of Shh in hypothalamic progenitors prevents their normal morphogenesis, leading to maintenance of the Shh receptor, ptc, and preventing progression to an Emx2(+)-proliferative progenitor state. Our data identify a molecular pathway for the downregulation of Shh via a BMP-Tbx2 pathway and provide a mechanism for expansion of a discrete progenitor domain within the developing forebrain.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Proteínas Hedgehog/fisiología , Hipotálamo/embriología , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Animales , Western Blotting , Proteínas Morfogenéticas Óseas/genética , Células COS , Ciclo Celular , Células Cultivadas , Embrión de Pollo , Pollos , Chlorocebus aethiops , Regulación hacia Abajo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hipotálamo/metabolismo , Técnicas para Inmunoenzimas , Hibridación in Situ , Ratones , Receptores Patched , Receptor Patched-1 , ARN Interferente Pequeño/farmacología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Células Madre/metabolismo , Proteínas de Dominio T Box/antagonistas & inhibidores , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo
14.
Development ; 132(23): 5185-97, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16284116

RESUMEN

Hypothalamic neurons play a key role in homeostasis, yet little is known about their differentiation. Here, we demonstrate that Shh and Bmp7 from the adjacent prechordal mesoderm govern hypothalamic neural fate, their sequential action controlling hypothalamic dopaminergic neuron generation in a Six3-dependent manner. Our data suggest a temporal distinction in the requirement for the two signals. Shh acts early to specify dopaminergic neurotransmitter phenotype. Subsequently, Bmp7 acts on cells that are ventralised by Shh, establishing aspects of hypothalamic regional identity in late-differentiating/postmitotic cells. The concerted actions of Shh and Bmp7 can direct mouse embryonic stem cell-derived neural progenitor cells to a hypothalamic dopaminergic fate ex vivo.


Asunto(s)
Dopamina , Inducción Embrionaria , Hipotálamo/citología , Neuronas/citología , Animales , Proteína Morfogenética Ósea 7 , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular , Embrión de Pollo , Embrión de Mamíferos/citología , Proteínas Hedgehog , Hipotálamo/embriología , Ratones , Transducción de Señal , Células Madre/citología , Factores de Tiempo , Transactivadores/fisiología , Factor de Crecimiento Transformador beta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA