Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3337, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849811

RESUMEN

Beans are an important plant species and are one of the most consumed legumes in human nutrition, especially as a protein, vitamin, mineral, and fiber source. Common bean (Phaseolus vulgaris L.) is a plant that also has an important role in natural nitrogen fixation. Currently, in vitro regeneration and micropropagation applications are limited in relation to genetic factors in bean Accordingly, there is great need to optimize micropropagation and tissue culture methods of the bean plant. To date, the effect of mammalian sex hormones (MSH) on in vitro conditions in P. vulgaris L. is poorly understood. This study examined the effects of different types of explants (embryo, hypocotyl, plumule, and radicle), MSH type (progesterone, 17 ß-estradiol, estrone, and testosterone), and MSH concentration (10-4, 10-6, 10-8 and 10-10 mmol L-1) on the responding explants induction rate (REI), viability of plantlets rate (VPR), shoot proliferation rate (SPR), root proliferation rate (RPR), and callus induction rate (CIR). The effects of mammalian sex hormones, concentrations, explant type, and their interactions were statistically significant (p ≤ 0.01) in all examined parameters. The best explants were embryo and plumule. Our results showed that the highest REI rate (100%) was recorded when 10-10 mmol L-1 of all MSH was applied to MS medium using the plumule explant. The highest VPR (100%) was obtained when 10-10 mmol L-1 of all MSH was applied to MS medium using the plumule explant. The highest root proliferation rates (77.5%) were recorded in MS medium supplemented with 10-8 mmol L-1 17ß-estradiol using embryo explant. The highest percentage of shoot-forming explants (100%) generally was obtained from embryo and plumule cultured in the MS culture medium with low MSH concentration. In addition, the highest CIR (100%) was obtained from embryo and plumule explant cultured in MS medium containing 10-10 mmol L-1 of all MSH types. In conclusion, we observed that mammalian sex hormones may be used in bean in vitro culture.


Asunto(s)
Callosidades , Phaseolus , Humanos , Animales , Verduras , Estradiol , Estrona , Mamíferos
2.
Genes (Basel) ; 13(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36292602

RESUMEN

The medicinal herb coriander (Coriandrum sativum L.), with a high linalool (LIN) content, is widely recognized for its therapeutic benefits. As a novel report, the goals of this study were to determine how methyl jasmonate (MeJA) affects total phenolic content (TPC), LIN content, flavonoid content (TFC), and changes in gene expression involved in the linalool biosynthesis pathway (CsγTRPS and CsLINS). Our findings showed that, in comparison to the control samples, MeJA treatment substantially enhanced the TPC, LIN, and TFC content in both ecotypes. Additionally, for both Iranian coriander ecotypes, treatment-induced increases in CsγTRPS and CsLINS expression were connected to LIN accumulation in all treatments. A 24 h treatment with 150 µM MeJA substantially increased the LIN content in the Mashhad and Zanjan ecotypes, which was between 1.48 and 1.69 times greater than that in untreated plants, according to gas chromatography-mass spectrometry (GC-MS) analysis. Our findings demonstrated that MeJA significantly affects the accumulation of LIN, TPC, and TFC in Iranian C. sativum treated with MeJA, which is likely the consequence of gene activation from the monoterpene biosynthesis pathway. Our discoveries have improved the understanding of the molecular mechanisms behind LIN synthesis in coriander plants.


Asunto(s)
Coriandrum , Coriandrum/química , Irán , Ecotipo , Monoterpenos Acíclicos , Fenoles , Flavonoides
3.
Plants (Basel) ; 11(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079574

RESUMEN

Nanomaterials with unique and diverse physico-chemical properties are used in plant science since they improve plant growth and development and offer protection against biotic and abiotic stressors. Previous studies have explored the effects of such nanomaterials on different plant mechanisms, but information about the effects of nanomaterials on induced DNA methylation, genomic instability and LTR retrotransposon polymorphism in wheat is lacking. Therefore, the present study highlights the key role of nanoparticles in DNA methylation and polymorphism in wheat by investigating the effects of ZnO, CuO and γ-Fe3O4 nanoparticles (NPs) on mature embryo cultures of wheat (Triticum aestivum L.). Nanoparticles were supplemented with Murashige and Skoog (MS) basal medium at normal (1X), double (2X) and triple (3X) concentrations. The findings revealed different responses to the polymorphism rate depending on the nanoparticle type and concentration. Genomic template stability (GTS) values were used to compare the changes encountered in iPBS profiles. ZnO, CuO and γ-Fe3O4 NPs increased the polymorphism rate and cytosine methylation compared to the positive control while reducing GTS values. Moreover, non-γ-Fe3O4 NPs treatments and 2X ZnO and CuO NP treatments yielded higher polymorphism percentages in both MspI- and HpaII-digested CRED-iPBS assays and were thus classified as hypermethylation when the average polymorphism percentage for MspI digestion was considered. On the other hand, the 3X concentrations of all nanoparticles decreased HpaII and MspI polymorphism percentages and were thus classified as hypomethylation. The findings revealed that MS medium supplemented with nanoparticles had epigenetic and genotoxic effects.

4.
Molecules ; 27(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268816

RESUMEN

The medicinal herb, lemon balm (Melissa officinalis L.), which is high in rosmarinic acid (RA), has well-known therapeutic value. The goals of this study were to investigate the effects of methyl jasmonate (MeJA) on RA content, total phenolic content (TPC), and total flavonoid content (TFC), as well as changes in expression of their biosynthesis-related key genes (MoPAL, Mo4CL, and MoRAS) in Iranian lemon balm ecotypes, as first reported. Our results revealed that MeJA doses significantly increase the RA content, TPC, and TFC in both ecotypes compared with the control samples. Additionally, the higher expression levels of MoPAL, Mo4CL, and MoRAS following treatment were linked to RA accumulation in all treatments for both Iranian lemon balm ecotypes. After 24 h of exposure to 150 µM MeJA concentration, HPLC analysis showed that MeJA significantly increased RA content in Esfahan and Ilam ecotypes, which was about 4.18- and 7.43-fold higher than untreated plants. Our findings suggested that MeJA has a considerable influence on RA, TPC, and TFC accumulation in MeJA-treated Iranian M. officinalis, which might be the result of gene activation from the phenylpropanoid pathway. As a result of our findings, we now have a better understanding of the molecular processes behind RA production in lemon balm plants.


Asunto(s)
Melissa , Acetatos , Cinamatos , Ciclopentanos , Depsidos , Ecotipo , Irán , Melissa/metabolismo , Oxilipinas , Extractos Vegetales/metabolismo , Ácido Rosmarínico
5.
Am J Bot ; 109(4): 580-601, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170754

RESUMEN

PREMISE: Evolutionary studies require solid phylogenetic frameworks, but increased volumes of phylogenomic data have revealed incongruent topologies among gene trees in many organisms both between and within genomes. Some of these incongruences indicate polytomies that may remain impossible to resolve. Here we investigate the degree of gene-tree discordance in Solanum, one of the largest flowering plant genera that includes the cultivated potato, tomato, and eggplant, as well as 24 minor crop plants. METHODS: A densely sampled species-level phylogeny of Solanum is built using unpublished and publicly available Sanger sequences comprising 60% of all accepted species (742 spp.) and nine regions (ITS, waxy, and seven plastid markers). The robustness of this topology is tested by examining a full plastome dataset with 140 species and a nuclear target-capture dataset with 39 species of Solanum (Angiosperms353 probe set). RESULTS: While the taxonomic framework of Solanum remained stable, gene tree conflicts and discordance between phylogenetic trees generated from the target-capture and plastome datasets were observed. The latter correspond to regions with short internodal branches, and network analysis and polytomy tests suggest the backbone is composed of three polytomies found at different evolutionary depths. The strongest area of discordance, near the crown node of Solanum, could potentially represent a hard polytomy. CONCLUSIONS: We argue that incomplete lineage sorting due to rapid diversification is the most likely cause for these polytomies, and that embracing the uncertainty that underlies them is crucial to understand the evolution of large and rapidly radiating lineages.


Asunto(s)
Magnoliopsida , Solanum , Filogenia , Plastidios/genética , Solanum/genética
6.
Plants (Basel) ; 9(6)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549379

RESUMEN

Within the family Solanaceae, Withania is a small genus belonging to the Solanoideae subfamily. Here, we report the de novo assembled chloroplast genome sequences of W. coagulans, W. adpressa, and W. riebeckii. The length of these genomes ranged from 154,162 to 154,364 base pairs (bp). These genomes contained a pair of inverted repeats (IRa and IRb) ranging from 25,029 to 25,071 bp that were separated by a large single-copy (LSC) region of 85,635-85,765 bp and a small single-copy (SSC) region of 18,457-18,469 bp. We analyzed the structural organization, gene content and order, guanine-cytosine content, codon usage, RNA-editing sites, microsatellites, oligonucleotide and tandem repeats, and substitutions of Withania plastomes, which revealed high similarities among the species. Comparative analysis among the Withania species also highlighted 10 divergent hotspots that could potentially be used for molecular marker development, phylogenetic analysis, and species identification. Furthermore, our analyses showed that even three mutational hotspots (rps4-trnT, trnM-atpE, and rps15) were sufficient to discriminate the Withania species included in current study.

7.
Am J Bot ; 105(7): 1175-1187, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30091787

RESUMEN

PREMISE OF THE STUDY: While brinjal eggplant (Solanum melongena L.) is the second most important solanaceous fruit crop, we lack firm knowledge of its evolutionary relationships. This in turn limits efficient use of crop wild relatives in eggplant improvement. Here, we examine the hypothesis of linear step-wise expansion of the eggplant group from Africa to Asia. METHODS: We use museum collections to generate nuclear and full-plastome data for all species of the Eggplant clade. We combine a phylogenomic approach with distribution data to infer a biogeographic scenario for the clade. KEY RESULTS: The Eggplant clade has Pleistocene origins in northern Africa. Dispersals to tropical Asia gave rise to Solanum insanum, the wild progenitor of the eggplant, and to African distinct lineages of widespread and southern African species. Results suggest that spread of the species to southern Africa has been recent and likely facilitated by large mammalian herbivores, such as the African elephant and impala feeding on Solanum fruit. CONCLUSIONS: Rather than a linear 'Out Of Africa' sequence, our results are more consistent with an initial dispersal event into Asia, and subsequent wide dispersal and differentiation across Africa driven by large mammalian herbivores. Our evolutionary results will affect future work on eggplant domestication and affect the use of wild relatives in breeding of this increasingly important solanaceous crop.


Asunto(s)
Solanum/genética , África del Norte , Asia , Frutas/genética , Filogenia , Solanum melongena/genética
8.
PLoS One ; 13(4): e0196069, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29694416

RESUMEN

Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family. This European diploid species can be found from marshlands to high mountainous regions and it is a common weed that serves as an alternative host and source of resistance genes against plant pathogens such as late blight (Phytophthora infestans). We sequenced the complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is characterized by a typical quadripartite structure composed of a large (85,901 bp) and small (18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA genes. All bittersweet plastid genes including non-functional ones and even intergenic spacer regions are transcribed in primary plastid transcripts covering 95.22% of the genome. These are later substantially edited in a post-transcriptional phase to activate gene functions. By comparing the bittersweet plastid genome with all available Solanaceae sequences we found that gene content and synteny are highly conserved across the family. During genome comparison we have identified several annotation errors, which we have corrected in a manual curation process then we have identified the major plastid genome structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to provide additional support for larger clades. The plastid genome sequence of bittersweet could help to benchmark Solanaceae plastid genome annotations and could be used as a reference for further studies. Such reliable annotations are important for gene diversity calculations, synteny map constructions and assigning partitions for phylogenetic analysis with de novo sequenced plastomes of Solanaceae.


Asunto(s)
Genoma del Cloroplasto , Análisis de Secuencia de ADN/métodos , Solanum/genética , Evolución Molecular , Tamaño del Genoma , Genoma de Planta , Anotación de Secuencia Molecular , Filogenia
9.
Gene ; 540(1): 117-21, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24583169

RESUMEN

Intron-targeting (IT) markers were developed from next generation sequencing (NGS) derived transcript sequencing data from the potato cultivar White Lady. The applicability of the IT markers was analyzed in other potato genotypes, and their transferability was studied in other Solanum species: section Archaesolanum (5 species), sect. Solanum (6 species) and a Solanum nigrum population (11 genotypes). Out of 250 randomly chosen transcript sequences, 144 intron harboring loci could be identified for which primer pairs were designed on exons flanking the putative introns. The usefulness of the IT primers was experimentally analyzed on a subset of 40 randomly chosen loci. Statistical analysis of diversity parameters was performed using the ATETRA and POPGENE software packages. By localizing the detected 17 polymorphic loci 11 of the 12 potato chromosomes could be identified. Specificity of the designed IT primers was tested by sequence analysis of amplified IT fragments in a randomly chosen locus. The results revealed the efficiency of NGS derived IT marker development and indicated their utility in diverse molecular analyses including their applicability for cross-species studies.


Asunto(s)
Solanum tuberosum/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Genes de Plantas , Sitios Genéticos , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones , Polimorfismo Genético , Análisis de Secuencia de ARN , Solanum/genética , Tetraploidía
10.
Biotechnol Lett ; 33(11): 2317-23, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21833547

RESUMEN

Non-functional trnF pseudogenes that rarely occur in embryophytes have been found in Solanaceae. We have sequenced the trnL-F intergenic spacer of four species of Solanum, and found duplicated regions of the original trnF gene. These repeats were 94-260 bp long causing large length variation in the trnL-F intergenic spacer resulting from differences in pseudogene copy number (2-4). The duplicated trnF regions are comprised of several highly structured motifs, which were partial residues, or entire parts of the Anticodon, T- and D-domains of the original gene, but all lacked the acceptor stems at the 5'- or 3'-end. Pseudogenes included several transitions and transversions in their sequences compared to the original trnF gene. Among pseudogene copies, T-domains were more frequent and fragmented than D-domain elements. Our results demonstrate that although chloroplast evolution is uniform such structural duplications in the sequences used for phylogenetic reconstructions should be treated with great caution.


Asunto(s)
Plastidios/genética , Seudogenes , Solanum/genética , ADN de Cloroplastos/química , ADN de Cloroplastos/genética , ADN Intergénico , ADN de Plantas/química , ADN de Plantas/genética , Dosificación de Gen , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA