Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurotherapeutics ; 20(1): 254-271, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36344724

RESUMEN

Sanfilippo disease, caused by mutations in the genes encoding heparan sulfate (HS) (a glycosaminoglycan; GAG) degradation enzymes, is a mucopolysaccharidosis (MPS), which is also known as MPS type III, and is characterized by subtypes A, B, C, and D, depending on identity of the dysfunctional enzyme. The lack of activity or low residual activity of an HS-degrading enzyme leads to excess HS in the cells, impairing the functions of different types of cells, including neurons. The disease usually leads to serious psychomotor dysfunction and death before adulthood. In this work, we show that the use of molecules known as dietary (poly)phenolic antioxidants and other natural compounds known as autophagy activators (genistein, capsaicin, curcumin, resveratrol, trehalose, and calcitriol) leads to accelerated degradation of accumulated HS in the fibroblasts of all subtypes of MPS III. Both the cytotoxicity tests we performed and the available literature data indicated that the use of selected autophagy inducers was safe. Since it showed the highest effectivity in cellular models, resveratrol efficacy was tested in experiments with a mouse model of MPS IIIB. Urinary GAG levels were normalized in MPS IIIB mice treated with 50 mg/kg/day resveratrol for 12 weeks or longer. Behavioral tests indicated complete correction of hyperactivity and anxiety in these animals. Biochemical analyses indicated that administration of resveratrol caused autophagy stimulation through an mTOR-independent pathway in the brains and livers of the MPS IIIB mice. These results indicate the potential use of resveratrol (and possibly other autophagy stimulators) in the treatment of Sanfilippo disease.


Asunto(s)
Antioxidantes , Mucopolisacaridosis III , Animales , Ratones , Resveratrol/uso terapéutico , Antioxidantes/uso terapéutico , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/genética , Heparitina Sulfato/metabolismo , Autofagia , Modelos Animales de Enfermedad , Fenoles
2.
Front Immunol ; 13: 956833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211337

RESUMEN

The appearance of bacteria resistant to most or even all known antibiotics has become a serious medical problem. One such promising and effective alternative form of therapy may be the use of phages, the administration of which is considered to be safe and highly effective, especially in animals with drug-resistant infections. Although there have been no reports to date suggesting that bacteriophages can cause any severe complications or adverse effects, we still know little about their interactions with animal organisms, especially in the context of the functioning of the immune system. Therefore, the aim of the present study was to compare the impact of the application of selected bacteriophages and antibiotics (enrofloxacin and colistin), commonly used in veterinary medicine, on immune functions in Salmonella enterica serovar Typhimurium-infected chickens. The birds were infected with S. Typhimurium and then treated with a phage cocktail (14 days), enrofloxacin (5 days), or colistin (5 days). The concentrations of a panel of pro-inflammatory cytokines (IL-1ß, IL-6, IFN-γ, IL-8, and IL-12) and cytokines that reveal anti-inflammatory effects (IL-10 and IL-4), the percentage of lymphocytes, and the level of stress hormones (corticosterone and cortisol), which significantly modulate the immune responses, were determined in different variants of the experiment. The phage cocktail revealed anti-inflammatory effects when administered either 1 day after infection or 2 days after S. Typhimurium detection in feces, as measured by inhibition of the increase in levels of inflammatory response markers (IL-1ß, IL-6, IFN-γ, IL-8, and IL-12). This was also confirmed by increased levels of cytokines that exert an anti-inflammatory action (IL-10 and IL-4) following phage therapy. Moreover, phages did not cause a negative effect on the number and activity of lymphocytes' subpopulations crucial for normal immune system function. These results indicate for the first time that phage therapy not only is effective but also can be used in veterinary medicine without disturbing immune homeostasis, expressed as cytokine imbalance, disturbed percentage of key immune cell subpopulations, and stress axis hyperactivity, which were observed in our experiments as adverse effects accompanying the antibiotic therapy.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Animales , Antibacterianos/uso terapéutico , Pollos , Colistina , Corticosterona , Citocinas , Enrofloxacina/uso terapéutico , Hidrocortisona , Interleucina-10 , Interleucina-12 , Interleucina-4 , Interleucina-6 , Interleucina-8 , Salmonella typhimurium , Serogrupo
3.
Front Cell Infect Microbiol ; 12: 941867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992162

RESUMEN

Phage therapy is a promising alternative treatment of bacterial infections in human and animals. Nevertheless, despite the appearance of many bacterial strains resistant to antibiotics, these drugs still remain important therapeutics used in human and veterinary medicine. Although experimental phage therapy of infections caused by Salmonella enterica was described previously by many groups, those studies focused solely on effects caused by bacteriophages. Here, we compared the use of phage therapy (employing a cocktail composed of two previously isolated and characterized bacteriophages, vB_SenM-2 and vB_Sen-TO17) and antibiotics (enrofloxacin and colistin) in chickens infected experimentally with S. enterica serovar Typhimurium. We found that the efficacies of both types of therapies (i.e. the use of antibiotics and phage cocktail) were high and very similar to one another when the treatment was applied shortly (one day) after the infection. Under these conditions, S. Typhimurium was quickly eliminated from the gastrointestinal tract (GIT), to the amount not detectable by the used methods. However, later treatment (2 or 4 days after detection of S. Typhimurium in chicken feces) with the phage cocktail was significantly less effective. Bacteriophages remained in the GIT for up to 2-3 weeks, and then were absent in feces and cloaca swabs. Interestingly, both phages could be found in various organs of chickens though with a relatively low abundance. No development of resistance of S. Typhimurium to phages or antibiotics was detected during the experiment. Importantly, although antibiotics significantly changed the GIT microbiome of chickens in a long-term manner, analogous changes caused by phages were transient, and the microbiome normalized a few weeks after the treatment. In conclusion, phage therapy against S. Typhimurium infection in chickens appeared as effective as antibiotic therapy (with either enrofloxacin or colistin), and less invasive than the use the antibiotics as fewer changes in the microbiome were observed.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Salmonelosis Animal , Salmonella enterica , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pollos , Colistina/farmacología , Enrofloxacina/farmacología , Salmonelosis Animal/microbiología , Salmonelosis Animal/terapia , Salmonella typhimurium , Serogrupo
4.
Molecules ; 25(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825600

RESUMEN

The broad spectrum of the mechanism of action of immune-boosting natural compounds as well as the complex nature of the food matrices make researching the health benefits of various food products a complicated task. Moreover, many routes are involved in the action of most natural compounds that lead to the inhibition of chronic inflammation, which results in a decrease in the ability to remove a pathogen asymptomatically and is connected to various pathological events, such as cancer. A number of cancers have been associated with inflammatory processes. The current review strives to answer the question of whether plant-derived sulfur compounds could be beneficial in cancer prevention and therapy. This review focuses on the two main sources of natural sulfur compounds: alliaceous and cruciferous vegetables. Through the presentation of scientific data which deal with the study of the chosen compounds in cancer (cell lines, animal models, and human studies), the discussion of food processing's influence on immune-boosting food content is presented. Additionally, it is demonstrated that there is still a need to precisely demonstrate the bioavailability of sulfur-containing compounds from various types of functional food, since the inappropriate preparation of vegetables can significantly reduce the content of beneficial sulfur compounds. Additionally, there is an urgent need to carry out more epidemiological studies to reveal the benefits of several natural compounds in cancer prevention and therapy.


Asunto(s)
Glucosinolatos/uso terapéutico , Inflamación/prevención & control , Neoplasias/prevención & control , Extractos Vegetales/uso terapéutico , Plantas/química , Compuestos de Azufre/uso terapéutico , Animales , Humanos
5.
Neuromolecular Med ; 22(1): 25-30, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31372809

RESUMEN

Mucopolysaccharidosis (MPS) consists of a group of 11 enzymatic defects which result in accumulation of undegraded glycosaminoglycans (GAG) in lysosomes. MPS is a severe metabolic disease for which only bone marrow/hematopoietic stem cell transplantation and enzyme replacement therapy are current therapeutic options. However, they are available for only a few of MPS types, and are ineffective in treatment of central nervous system. Recent studies indicated that the autophagy process can be impaired in MPS, but various contradictory conclusions have been published in this matter. Nevertheless, stimulation of autophagy has been proposed as a potential therapeutic option for MPS, and very recent results suggest that such approach might be effective in improving MPS symptoms. Still the mechanisms of autophagy changes in MPS are not clear, and efficiency of autophagy activation in clearing the storage material requires further investigation. These problems are summarized and discussed in this review.


Asunto(s)
Autofagia , Mucopolisacaridosis/etiología , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Evaluación Preclínica de Medicamentos , Terapia de Reemplazo Enzimático , Genisteína/farmacología , Genisteína/uso terapéutico , Humanos , Mucopolisacaridosis/tratamiento farmacológico , Mucopolisacaridosis/terapia , Proyectos de Investigación , Trehalosa/farmacología , Trehalosa/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA