RESUMEN
X-ray induced molecular luminescence (XML) is a phenomenon that can be utilized for clinical, deep-tissue functional imaging of tailored molecular probes. In this study, a survey of common or clinically approved fluorophores was carried out for their megavoltage X-ray induced excitation and emission characteristics. We find that direct scintillation effects and Cherenkov generation are two possible ways to cause these molecules' excitation. To distinguish the contributions of each excitation mechanism, we exploited the dependency of Cherenkov radiation yield on X-ray energy. The probes were irradiated by constant dose of 6 MV and 18 MV X-ray radiation, and their relative emission intensities and spectra were quantified for each X-ray energy pair. From the ratios of XML, yield for 6 MV and 18 MV irradiation we found that the Cherenkov radiation dominated as an excitation mechanism, except for aluminum phthalocyanine, which exhibited substantial scintillation. The highest emission yields were detected from fluorescein, proflavin and aluminum phthalocyanine, in that order. XML yield was found to be affected by the emission quantum yield, overlap of the fluorescence excitation and Cherenkov emission spectra, scintillation yield. Considering all these factors and XML emission spectrum respective to tissue optical window, aluminum phthalocyanine offers the best XML yield for deep tissue use, while fluorescein and proflavine are most useful for subcutaneous or superficial use.
Asunto(s)
Colorantes Fluorescentes/efectos de la radiación , Luminiscencia , Evaluación Preclínica de Medicamentos , Diseño de Equipo , Fluoresceína/efectos de la radiación , Humanos , Indoles/efectos de la radiación , Isoindoles/efectos de la radiación , Azul de Metileno/efectos de la radiación , Compuestos Organometálicos/efectos de la radiación , Aceleradores de Partículas , Proflavina/efectos de la radiación , Protoporfirinas/efectos de la radiación , Solventes , Espectrometría de Fluorescencia , Verteporfina/efectos de la radiación , Rayos XRESUMEN
BACKGROUND: X-Ray induced phototherapy is highly sought after as it provides a deep tissue, synergistic method of treating cancers via standard-of-care radiotherapy. When this is combined with releasable chemotherapy agents, it can provide high target selectivity, with reduced off-target organ effects that limit current systemic therapies. We have recently developed a unique light-activated drug delivery system whereby the drug is conjugated to an alkylcobalamin scaffold. Alkylcobalamins are actively transported into cells by transcobalamin receptors (TCblR), which are overexpressed in a variety of cancer types. We hope to utilize this cobalamin scaffold technology for drug delivery in pancreatic adenocarcinoma (PDAC) cancer. METHODS: The ability of the cobalamin scaffold to selectively target PDAC was investigated by treating mice that had MIA PaCa-2 xenografts with an alkylcobalamin labeled with the fluorophore Bodipy650 (Bodipy650-cobalamin). The mice were imaged alive and organs as well as tumors were subsequently imaged ex vivo. In addition, we examined the potential of the cobalamin scaffold to deliver drugs to orthotopic pancreas MIA PaCa-2 tumors with Bodipy650-cobalamin. We determined the light dose required for release of cargo from the cobalamin scaffold by examining the fluorescence increase of Bodipy650-cobalamin in response to red light (650 nm). Finally, we probed the ability of the cobalamin scaffold to release cargo with increasing X-ray doses from a clinical linear accelerator. RESULTS: We have found that Bodipy650-cobalamin was shown to localize in MIA PaCa-2 tumors, both in flank and orthotopic models. We quantified a light dose for red light release from the cobalamin scaffold that is within normal clinical doses required for photodynamic therapy. This derivative was also activated with clinical X-ray doses from a linear accelerator. CONCLUSIONS: Tumor selectivity combined with fluorescence detection demonstrates the effectiveness of the vitamin B12 scaffold as a theranostic targeting agent. The activation of this scaffold with radiation from a linear accelerator shows potential for action as radiation-induced chemotherapy.
Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Fotoquimioterapia , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/radioterapia , Animales , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Vitamina B 12 , Rayos XRESUMEN
Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01-1 nW cm(-2) per MBq g(-1) for radionuclides, and 1-100 µW cm(-2) per Gy s(-1) for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm(-2) for radionuclides, and mJ cm(-2) for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/.
Asunto(s)
Algoritmos , Imagen Molecular/métodos , Fotones , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodosRESUMEN
Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultrasound.
Asunto(s)
Imagen de Cuerpo Entero/instrumentación , Imagen de Cuerpo Entero/métodos , Animales , Evaluación Preclínica de Medicamentos , Fluorescencia , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Ratones , Tomografía/instrumentación , Tomografía/métodos , Irradiación Corporal Total/instrumentación , Irradiación Corporal Total/métodosRESUMEN
Exogenous administration of delta-aminolevulinic acid (delta-ALA) leads to selective accumulation of protoporphyrin IX (PpIX) in brain tumors, and has shown promising results in increasing extent of resection in fluorescence-guided resection (FGR) of brain tumors. However, this approach still suffers from heterogeneous staining and so some tumor margins may go undetected because of this variation in PpIX production. The aim of this study was to test the hypothesis that iron chelation therapy could increase the level of fluorescence in malignant glioma tumors. Mice implanted with xenograft U251-GFP glioma tumor cells were given a 200 mg kg(-1) dose of deferoxamine (DFO), once a day for 3 days prior to delta-ALA administration. The PpIX fluorescence observed in the tumor regions was 1.9 times the background in animal group without DFO, and 2.9 times the background on average, in the DFO pre-treated group. A 50% increase in PpIX fluorescence contrast in the DFO group was observed relative to the control group (t-test P-value = 0.0020). These results indicate that iron chelation therapy could significantly increase delta-ALA-induced PpIX fluorescence in malignant gliomas, pointing to a potential role of iron chelation therapy for more effective FGR of brain tumors.
Asunto(s)
Deferoxamina/farmacología , Diagnóstico por Imagen/métodos , Glioma/diagnóstico , Protoporfirinas/análisis , Ácido Aminolevulínico , Animales , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Fluorescencia , Glioma/patología , Humanos , Quelantes del Hierro/farmacología , Ratones , Trasplante HeterólogoRESUMEN
Frequency-domain near-infrared (NIR) diffuse spectral tomography with a mode-locked Ti:sapphire laser is presented, providing tunable multiwavelength quantitative spectroscopy with maximal power for thick tissue imaging. The system was developed to show that intrinsically high stability can be achieved with many wavelengths in the NIR range, using a mode-locked signal of 80 MHz with heterodyned lock-in detection. The effect of cumulative noise from multiple wavelengths of data on the reconstruction process was studied, and it was shown that inclusion of more wavelengths can reduce skew in the noise distribution. This normalization of the data variance then minimizes errors in estimation of chromophore concentrations. Simulations and tissue phantom experiments were used to quantify this improvement in image accuracy for recovery of tissue hemoglobin and oxygen saturation.
Asunto(s)
Óxido de Aluminio , Procesamiento de Imagen Asistido por Computador , Rayos Láser , Titanio , Tomografía Óptica/instrumentación , Artefactos , Simulación por Computador , Hemoglobinas/metabolismo , Humanos , Modelos Teóricos , Oxígeno/sangre , Fantasmas de ImagenRESUMEN
PURPOSE: Loss of vascular barrier function has been observed shortly following vascular-targeting photodynamic therapy. However, the mechanism involved in this event is still not clear, and the therapeutic implications associated with this pathophysiologic change have not been fully explored. EXPERIMENTAL DESIGN: The effect of vascular-targeting photodynamic therapy on vascular barrier function was examined in both s.c. and orthotopic MatLyLu rat prostate tumor models and endothelial cells in vitro, using photosensitizer verteporfin. Vascular permeability to macromolecules (Evans blue-albumin and high molecular weight dextran) was assessed with dye extraction (ex vivo) and intravital microscopy (in vivo) methods. Intravital microscopy was also used to monitor tumor vascular functional changes after vascular-targeting photodynamic therapy. The effects of photosensitization on monolayer endothelial cell morphology and cytoskeleton structures were studied with immunofluorescence staining. RESULTS: Vascular-targeting photodynamic therapy induced vascular barrier dysfunction in the MatLyLu tumors. Thus, tumor uptake of macromolecules was significantly increased following photodynamic therapy treatments. In addition to vascular permeability increase, blood cell adherence to vessel wall was observed shortly after treatment, further suggesting the loss of endothelial integrity. Blood cell adhesion led to the formation of thrombi that can occlude blood vessels, causing vascular shutdown. However, viable tumor cells were often detected at tumor periphery after vascular-targeting photodynamic therapy. Endothelial cell barrier dysfunction following photodynamic therapy treatment was also observed in vitro by culturing monolayer endothelial cells on Transwell inserts. Immunofluorescence study revealed microtubule depolymerization shortly after photosensitization treatment and stress actin fiber formation thereafter. Consequently, endothelial cells were found to retract, and this endothelial morphologic change led to the formation of intercellular gaps. CONCLUSIONS: Vascular-targeting photodynamic therapy permeabilizes blood vessels through the formation of endothelial intercellular gaps, which are likely induced via endothelial cell microtubule depolymerization following vascular photosensitization. Loss of endothelial barrier function can ultimately lead to tumor vascular shutdown and has significant implications in drug transport and tumor cell metastasis.