Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med Biol ; 69(8)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417178

RESUMEN

Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Glioma , Linfocinas , Humanos , Ratas , Animales , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Terapia por Estimulación Eléctrica/métodos , Glioma/terapia , Glioblastoma/patología
2.
Phys Med Biol ; 68(20)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37703902

RESUMEN

Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.


Asunto(s)
Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Ratas , Animales , Glioblastoma/patología , Electricidad , Conductividad Eléctrica , Terapia por Estimulación Eléctrica/métodos
3.
Bioelectrochemistry ; 149: 108287, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36306728

RESUMEN

Exposing cancer cells to alternating electric fields of 100-300 kHz frequency and 1-4 V/cm strength has been shown to significantly reduce cancer growth in cell culture and in human patients. This form of anti-cancer therapy is more commonly referred to as tumor treating fields (TTFields), a novel treatment modality that has been approved by the U.S. Food and Drug Administration for use in patients with glioblastoma and malignant pleural mesothelioma. Pivotal trials in other solid organ cancer trials are underway. In regards to overall survival, TTFields alone is comparable to chemotherapy alone in recurrent glioblastoma. However, when combined with adjuvant chemotherapy, TTFields prolong median survival by 4.9 months in newly-diagnosed glioblastoma. TTFields hold promise as a therapeutic approach to numerous solid organ cancers. This review summarizes the current status of TTFields research at the preclinical level, highlighting recent aspects of a relatively complex working hypothesis. In addition, we point out the gaps between limited preclinical in vivo studies and the available clinical data. To date, no customized system for TTFields delivery in rodent models of glioblastoma has been presented. We aim to motivate the expansion of TTFields preclinical research and facilitate the availability of suitable hardware, to ultimately improve outcomes in patients with cancer.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Glioblastoma/terapia , Terapia Combinada , Electricidad
4.
J Neurooncol ; 134(2): 259-268, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28681243

RESUMEN

Glioblastoma (GBM) is the most aggressive and lethal form of brain cancer. Standard therapies are non-specific and often of limited effectiveness; thus, efforts are underway to uncover novel, unorthodox therapies against GBM. In previous studies, we investigated Withaferin A, a steroidal lactone from Ayurvedic medicine that inhibits proliferation in cancers including GBM. Another novel approach, tumor treating fields (TTFields), is thought to disrupt mitotic spindle formation and stymie proliferation of actively dividing cells. We hypothesized that combining TTFields with Withaferin A would synergistically inhibit proliferation in glioblastoma. Human glioblastoma cells (GBM2, GBM39, U87-MG) and human breast adenocarcinoma cells (MDA-MB-231) were isolated from primary tumors. The glioma cell lines were genetically engineered to express firefly luciferase. Proliferative potential was assessed either by bioluminescence imaging or cell counting via hemocytometer. TTFields (4 V/cm) significantly inhibited growth of the four cancer cell lines tested (n = 3 experiments per time point, four measurements per sample, p < 0.02 at least; 2-way ANOVA, control vs. treatment). The combination of Withaferin A (10-100 nM) with TTFields significantly inhibited the growth of the glioma cells to a degree beyond that of Withaferin A or TTFields alone. The interaction of the Withaferin A and TTFields on glioma cells was found to be synergistic in nature (p < 0.01, n = 3 experiments). These findings were validated by both bioluminescence and hemocytometric measurements. The combination of Withaferin A with TTFields represents a novel approach to treat GBM in a manner that is likely better than either treatment alone and that is synergistic.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/terapia , Proliferación Celular , Terapia por Estimulación Eléctrica , Glioma/terapia , Witanólidos/uso terapéutico , Adenocarcinoma/patología , Adenocarcinoma/fisiopatología , Adenocarcinoma/terapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Terapia Combinada , Doxorrubicina/uso terapéutico , Terapia por Estimulación Eléctrica/métodos , Glioma/patología , Glioma/fisiopatología , Humanos , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Temperatura
5.
J Neurooncol ; 126(2): 253-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26650066

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985-1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3-5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 µM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 µM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Withania/química , Witanólidos/administración & dosificación , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Receptores ErbB/metabolismo , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Mediciones Luminiscentes , Ratones , Ratones Desnudos , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/química , Witanólidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA