Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Oxid Med Cell Longev ; 2021: 3687700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707776

RESUMEN

Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Oncología Médica , Nanomedicina , Paclitaxel/uso terapéutico , Animales , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Composición de Medicamentos , Sinergismo Farmacológico , Femenino , Humanos , Nanopartículas , Paclitaxel/efectos adversos , Paclitaxel/química
2.
Front Physiol ; 11: 694, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714204

RESUMEN

Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.

3.
Toxins (Basel) ; 11(6)2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174319

RESUMEN

The castor plant (Ricinus communis L.) has been known since time immemorial in traditional medicine in the pharmacopeia of Mediterranean and eastern ancient cultures. Moreover, it is still used in folk medicine worldwide. Castor bean has been mainly recommended as anti-inflammatory, anthelmintic, anti-bacterial, laxative, abortifacient, for wounds, ulcers, and many other indications. Many cases of human intoxication occurred accidentally or voluntarily with the ingestion of castor seeds or derivatives. Ricinus toxicity depends on several molecules, among them the most important is ricin, a protein belonging to the family of ribosome-inactivating proteins. Ricin is the most studied of this category of proteins and it is also known to the general public, having been used for several biocrimes. This manuscript intends to give the reader an overview of ricin, focusing on the historical path to the current knowledge on this protein. The main steps of ricin research are here reported, with particular regard to its enzymatic activity, structure, and cytotoxicity. Moreover, we discuss ricin toxicity for animals and humans, as well as the relation between bioterrorism and ricin and its impact on environmental toxicity. Ricin has also been used to develop immunotoxins for the elimination of unwanted cells, mainly cancer cells; some of these immunoconjugates gave promising results in clinical trials but also showed critical limitation.


Asunto(s)
Inmunotoxinas/toxicidad , Ricina/toxicidad , Toxinas Biológicas/toxicidad , Animales , Bioterrorismo , Humanos
4.
Front Pharmacol ; 10: 486, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139079

RESUMEN

Momordica charantia, commonly called bitter melon, is a plant belonging to Cucurbitaceae family known for centuries for its pharmacological activities, and nutritional properties. Due to the presence of many bioactive compounds, some of which possess potent biological actions, this plant is used in folk medicine all over the world for the treatment of different pathologies, mainly diabetes, but also cancer, and other inflammation-associated diseases. It is widely demonstrated that M. charantia extracts contribute in lowering glycaemia in patients affected by type 2 diabetes. However, the majority of existing studies on M. charantia bioactive compounds were performed only on cell lines and in animal models. Therefore, because the real impact of bitter melon on human health has not been thoroughly demonstrated, systematic clinical studies are needed to establish its efficacy and safety in patients. Besides, both in vitro and in vivo studies have demonstrated that bitter melon may also elicit toxic or adverse effects under different conditions. The aim of this review is to provide an overview of anti-inflammatory and anti-neoplastic properties of bitter melon, discussing its pharmacological activity as well as the potential adverse effects. Even if a lot of literature is available about bitter melon as antidiabetic drug, few papers discuss the anti-inflammatory and anti-cancer properties of this plant.

5.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30769921

RESUMEN

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 µM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.


Asunto(s)
Neoplasias del Colon/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Palmíticos/metabolismo , Fosfolípidos/química , Células CACO-2 , Membrana Celular/química , Membrana Celular/metabolismo , Ésteres del Colesterol/biosíntesis , Ésteres del Colesterol/química , Ésteres del Colesterol/metabolismo , Neoplasias del Colon/química , Neoplasias del Colon/patología , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Omega-3/biosíntesis , Humanos , Ácidos Linoleicos/química , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacología , Linoleoil-CoA Desaturasa/química , Microscopía Fluorescente , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacología , Fosfolípidos/biosíntesis
6.
Microbiol Res ; 215: 76-88, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30172312

RESUMEN

Matricaria is a widespread genus of flowering plants of the family Asteraceae that grow in temperate regions of Europe, Asia, America and Africa. Some of the species are also naturalized in Australia. Some species of this genus such as Chamomiles are recognized medicinal plants and cultivated in several countries for commercial purposes: to obtain its blue essence, as herbal tea, and for pharmaceutical or cosmeceutical uses. The phytochemical composition of Matricaria spp. includes volatile terpenoids (e.g., α-bisabolol, bisabolol oxide A and B, ß-trans-farnesene and chamazulene), sesquiterpene lactones such as matricin, and phenolic compounds (flavonoids, coumarins and phenolic acids). Their essential oil is obtained from the fresh or dried inflorescences by steam distillation, and additionally cohobation of the remaining water. The volatile composition of the essential oil, especially the content of the valuable components α-bisabolol and chamazulene, depends on the plant part, origin and quality of the source, genetic, and environmental factors. Moreover, other parameters, such as season of harvest and methods of extraction, can affect the extraction yield of the essential oils/extracts, their composition and, therefore, their bioactivity. Due to the importance of this genus and particularly M. recutita (M. chamomilla), this review focus on its cultivation, factor affecting essential oils' composition and their role in traditional medicine, as antibacterial agents and finally as food preservatives.


Asunto(s)
Antiinfecciosos/química , Matricaria/química , Aceites Volátiles/química , Fitoquímicos/química , Extractos Vegetales/química , Plantas Medicinales/química , Antiinfecciosos/farmacología , Azulenos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Cumarinas/metabolismo , Granjas , Flavonoides/química , Alimentos , Industria de Alimentos , Conservantes de Alimentos , Hidroxibenzoatos/química , Lactonas/farmacología , Sesquiterpenos Monocíclicos , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Aceites de Plantas/química , Estaciones del Año , Sesquiterpenos/farmacología , Sesquiterpenos de Guayano
7.
Toxins (Basel) ; 10(8)2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096764

RESUMEN

Bougainvillea (Bougainvillea spectabilis Willd.) is a plant widely used in folk medicine and many extracts from different tissues of this plant have been employed against several pathologies. The observation that leaf extracts of Bougainvillea possess antiviral properties led to the purification and characterization of a protein, named bouganin, which exhibits typical characteristics of type 1 ribosome-inactivating proteins (RIPs). Beyond that, bouganin has some peculiarities, such as a higher activity on DNA with respect to ribosomal RNA, low systemic toxicity, and immunological properties quite different than other RIPs. The sequencing of bouganin and the knowledge of its three-dimensional structure allowed to obtain a not immunogenic mutant of bouganin. These features make bouganin a very attractive tool as a component of immunotoxins (ITs), chimeric proteins obtained by linking a toxin to a carrier molecule. Bouganin-containing ITs showed very promising results in the experimental treatment of both hematological and solid tumors, and one bouganin-containing IT has entered Phase I clinical trial. In this review, we summarize the milestones of the research on bouganin such as bouganin chemico-physical characteristics, the structural properties and de-immunization studies. In addition, the in vitro and in vivo results obtained with bouganin-containing ITs are summarized.


Asunto(s)
Inmunotoxinas/farmacología , Proteínas Inactivadoras de Ribosomas/farmacología , Animales , Antígenos/química , Antígenos/farmacología , Antivirales/química , Antivirales/farmacología , Humanos , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Proteínas Inactivadoras de Ribosomas/química
8.
Molecules ; 21(11)2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27869738

RESUMEN

Ribosome-inactivating proteins (RIPs) are enzymes that deadenylate nucleic acids and are broadly distributed in the plant kingdom. Many plants that contain RIPs are listed in the pharmacopoeias of folk medicine all over the world, mostly because of their toxicity. This review analyses the position occupied in traditional medicine by plants from which RIPs have been isolated. The overview starts from the antique age of the Mediterranean area with ancient Egypt, followed by the Greek and Roman classic period. Then, the ancient oriental civilizations of China and India are evaluated. More recently, Unani medicine and European folk medicine are examined. Finally, the African and American folk medicines are taken into consideration. In conclusion, a list of RIP-expressing plants, which have been used in folk medicine, is provided with the geographical distribution and the prescriptions that are recommended by traditional healers. Some final considerations are provided on the present utilization of such herbal treatments, both in developing and developed countries, often in the absence of scientific validation. The most promising prospect for the medicinal use of RIP-expressing plants is the conjugation of purified RIPs to antibodies that recognise tumour antigens for cancer therapy.


Asunto(s)
Medicina Tradicional China , Proteínas de Plantas/uso terapéutico , Plantas Medicinales/química , Proteínas Inactivadoras de Ribosomas/uso terapéutico , Animales , Humanos , Farmacopeas como Asunto , Fitoterapia , Proteínas de Plantas/metabolismo , Plantas Medicinales/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo
9.
Phytomedicine ; 23(1): 32-41, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26902405

RESUMEN

BACKGROUND: Stenodactylin is a highly toxic plant lectin purified from the caudex of Adenia stenodactyla, with molecular structure, intracellular routing and enzyme activity similar to those of ricin, a well-known type 2 ribosome-inactivating protein. However, in contrast with ricin, stenodactylin is retrogradely transported not only in peripheral nerves but also in the central nervous system. PURPOSE: Stenodactylin properties make it a potential candidate for application in neurobiology and in experimental therapies against cancer. Thus, it is necessary to better clarify the toxic activity of this compound. STUDY DESIGN: We investigated the mechanism of stenodactylin-induced cell death in the neuroblastoma-derived cell line, NB100, evaluating the implications of different death pathways and the involvement of oxidative stress. METHODS: Stenodactylin cytotoxicity was determined by evaluating protein synthesis and other viability parameters. Cell death pathways and oxidative stress were analysed through flow cytometry and microscopy. Inhibitors of apoptosis, oxidative stress and necroptosis were tested to evaluate their protective effect against stenodactylin cytotoxicity. RESULTS: Stenodactylin efficiently blocked protein synthesis and reduced the viability of neuroblastoma cells at an extremely low concentration and over a short time (1 pM, 24 h). Stenodactylin induced the strong and rapid activation of apoptosis and the production of free radicals. Here, for the first time, a complete and long lasting protection from the lethal effect induced by a toxic type 2 ribosome-inactivating protein has been obtained by combining the caspase inhibitor Z-VAD-fmk, to either the hydrogen peroxide scavenger catalase or the necroptotic inhibitor necrostatin-1. CONCLUSION: In respect to stenodactylin cytotoxicity, our results: (i) confirm the high toxicity to nervous cells, (ii) indicate that multiple cell death pathways can be induced, (iii) show that apoptosis is the main death pathway, (iv) demonstrate the involvement of necroptosis and (v) oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores de Caspasas/farmacología , Catalasa/farmacología , Imidazoles/farmacología , Indoles/farmacología , Lectinas/efectos adversos , N-Glicosil Hidrolasas/efectos adversos , Neuroblastoma/patología , Clorometilcetonas de Aminoácidos/farmacología , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
10.
Angew Chem Int Ed Engl ; 54(5): 1578-82, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25504761

RESUMEN

Cumulative evidence strongly supports that the amyloid and tau hypotheses are not mutually exclusive, but concomitantly contribute to neurodegeneration in Alzheimer's disease (AD). Thus, the development of multitarget drugs which are involved in both pathways might represent a promising therapeutic strategy. Accordingly, reported here in is the discovery of 6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first class of molecules able to simultaneously modulate BACE-1 and GSK-3ß. Notably, one triazinone showed well-balanced in vitro potencies against the two enzymes (IC50 of (18.03±0.01) µM and (14.67±0.78) µM for BACE-1 and GSK-3ß, respectively). In cell-based assays, it displayed effective neuroprotective and neurogenic activities and no neurotoxicity. It also showed good brain permeability in a preliminary pharmacokinetic assessment in mice. Overall, triazinones might represent a promising starting point towards high quality lead compounds with an AD-modifying potential.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Triazinas/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Barrera Hematoencefálica/metabolismo , Dominio Catalítico , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Semivida , Lipopolisacáridos/toxicidad , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Unión Proteica , Ratas , Triazinas/metabolismo , Triazinas/farmacología , Regulación hacia Arriba/efectos de los fármacos
11.
Int J Mol Sci ; 14(8): 15532-45, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23892598

RESUMEN

Ribosome-inactivating proteins (RIPs), enzymes that are widely distributed in the plant kingdom, inhibit protein synthesis by depurinating rRNA and many other polynucleotidic substrates. Although RIPs show antiviral, antifungal, and insecticidal activities, their biological and physiological roles are not completely understood. Additionally, it has been described that RIP expression is augmented under stressful conditions. In this study, we evaluated protein synthesis inhibition activity in partially purified basic proteins (hereafter referred to as RIP activity) from tissue extracts of Fragaria × ananassa (strawberry) cultivars with low (Dora) and high (Record) tolerance to root pathogens and fructification stress. Association between the presence of RIP activity and the crop management (organic or integrated soil), growth stage (quiescence, flowering, and fructification), and exogenous stress (drought) were investigated. RIP activity was found in every tissue tested (roots, rhizomes, leaves, buds, flowers, and fruits) and under each tested condition. However, significant differences in RIP distribution were observed depending on the soil and growth stage, and an increase in RIP activity was found in the leaves of drought-stressed plants. These results suggest that RIP expression and activity could represent a response mechanism against biotic and abiotic stresses and could be a useful tool in selecting stress-resistant strawberry genotypes.


Asunto(s)
Fragaria/enzimología , Fragaria/metabolismo , Extractos Vegetales/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo , Animales , Estadios del Ciclo de Vida , Biosíntesis de Proteínas , ARN Ribosómico/antagonistas & inhibidores , ARN Ribosómico/metabolismo , Estrés Fisiológico
12.
PLoS One ; 8(2): e55537, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405167

RESUMEN

Palmitic acid is known to be apoptotic for nervous cells but no data are available on membrane lipidome transformations occurring during its supplementation, although membrane lipids are clearly involved in the apoptotic signaling cascade. NB100 neuroblastoma cells were supplemented with palmitic acid and membrane fatty acids were isolated, derivatized and analysed by gas chromatography at defined time intervals. Parallely, cell viability, morphology, apoptosis, cPLA(2) and caspase activations were checked. Interestingly, under 150 µM supplementation the incorporation of palmitic acid was accompanied by the specific release of arachidonic acid. This event was timely correlated with cPLA(2) and caspases activations, and the time window of 60 minutes was envisaged for crucial membrane lipidome changes. The simultaneous addition of 50 µM oleic, 50 µM arachidonic and 150 µM palmitic acids to the cell cultures influenced membrane changes with suppression of caspase activation and maintenance of cell viability. These results highlight the role of the membrane asset with fatty acid remodeling and suggest the potential of lipid-based strategies for influencing cell response and fate in human diseases, such as neurodegenerative disorders or tumours.


Asunto(s)
Ácido Araquidónico/administración & dosificación , Membrana Celular/metabolismo , Ácidos Grasos/análisis , Lípidos de la Membrana/metabolismo , Neuroblastoma/metabolismo , Ácido Oléico/administración & dosificación , Ácido Palmítico/administración & dosificación , Apoptosis , Supervivencia Celular , Cromatografía de Gases , Suplementos Dietéticos , Humanos , Neuroblastoma/patología , Células Tumorales Cultivadas
13.
Biochim Biophys Acta ; 1760(5): 783-92, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16564632

RESUMEN

The basic protein fraction of tissue extracts from 40 edible plants inhibited cell-free protein synthesis and released adenine from herring sperm DNA, thus having adenine glycosylase activity. This suggested the presence of ribosome-inactivating proteins (RIPs) in the plant extracts. This indication was further strengthened by the presence of the two activities after a partial chromatographic purification of three extracts, including that from Lycopersicon esculentum (tomato), which had very low activity. From the extract of Cucurbita moschata (pumpkin), the most active one, a glycoprotein of 30,665 Da was purified which had the properties of a RIP, in that (i) it inhibited protein synthesis by a rabbit reticulocyte lysate with IC50 (concentration giving 50% inhibition) 0.035 nM (1.08 ng ml(-1)) and by HeLa, HT29 and JM cells with IC50 in the 100 nM range, (ii) deadenylated hsDNA and other polynucleotidic substrates, and (iii) depurinated yeast rRNA at a concentration of 0.1 ng ml(-1), all values being comparable to those of other RIPs. The C. moschata RIP gave a weak cross-reaction only with an antiserum against dianthin 32, but not with antisera against other RIPs, and had superoxide dismutase, antifungal and antibacterial activities.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antifúngicos/aislamiento & purificación , Cucurbita/metabolismo , Glicoproteínas/farmacología , Proteínas de Plantas/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antibacterianos/inmunología , Antibacterianos/farmacología , Antifúngicos/inmunología , Antifúngicos/farmacología , Extractos Celulares/química , Extractos Celulares/farmacología , Reacciones Cruzadas , ADN/efectos de los fármacos , Glicoproteínas/inmunología , Glicoproteínas/aislamiento & purificación , Humanos , Concentración 50 Inhibidora , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/inmunología , Proteínas de Plantas/aislamiento & purificación , ARN Ribosómico/efectos de los fármacos , Conejos , Proteínas Inactivadoras de Ribosomas Tipo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA