Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mar Drugs ; 21(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504915

RESUMEN

In the last decades, the interest in bioactive compounds derived from natural sources including bacteria, fungi, plants, and algae has significantly increased. It is well-known that aquatic or terrestrial organisms can produce, in special conditions, secondary metabolites with a wide range of biological properties, such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. In this study, we focused on the extremophilic microalga Galdieria sulphuraria as a possible producer of bioactive compounds with antiviral activity. The algal culture was subjected to organic extraction with acetone. The cytotoxicity effect of the extract was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antiviral activity was assessed through a plaque assay against herpesviruses and coronaviruses as enveloped viruses and poliovirus as a naked one. The monolayer was treated with different concentrations of extract, ranging from 1 µg/mL to 200 µg/mL, and infected with viruses. The algal extract displayed strong antiviral activity at non-toxic concentrations against all tested enveloped viruses, in particular in the virus pre-treatment against HSV-2 and HCoV-229E, with IC50 values of 1.7 µg/mL and IC90 of 1.8 µg/mL, respectively. However, no activity against the non-enveloped poliovirus has been detected. The inhibitory effect of the algal extract was confirmed by the quantitative RT-PCR of viral genes. Preliminary chemical profiling of the extract was performed using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), revealing the enrichment in primary fatty acid amides (PFAA), such as oleamide, palmitamide, and pheophorbide A. These promising results pave the way for the further purification of the mixture to explore its potential role as an antiviral agent.


Asunto(s)
Infecciones por Coronavirus , Rhodophyta , Virus , Humanos , Antivirales/química , Rhodophyta/metabolismo , Extractos Vegetales/farmacología
2.
Curr Top Med Chem ; 22(11): 939-956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34392822

RESUMEN

To date, just over a hundred phenanthrenoid dimers have been isolated. Of these, forty-two are completely phenanthrenic in nature. They are isolated from fourteen genera of different plants belonging to only five families, of which Orchidaceae is the most abundant source. Other nine completely acetylated and five methylated dimers were also defined, which were effective in establishing the position of the free hydroxyls of the corresponding natural products, from which they were obtained by semi-synthesis. Structurally, they could be useful chemotaxonomic markers considering that some substituents are typical of a single-family, such as the vinyl group for Juncaceae. From a biogenetic point of view, it is thought that these compounds derive from the radical coupling of the corresponding phenanthrenes or by dehydrogenation of the dihydrophenanthrenoid analogs. Phenanthrenes or dihydroderivatives possess different biological activities, e.g., antiproliferative, antimicrobial, antiinflammatory, antioxidant, spasmolytic, anxiolytic, and antialgal effects. The aim of this review is to summarize the occurrence of phenanthrene dimers in the different natural sources and give a comprehensive overview of their structural characteristics and biological activities.


Asunto(s)
Orchidaceae , Fenantrenos , Antiinflamatorios/química , Humanos , Orchidaceae/química , Fenantrenos/química , Fenantrenos/farmacología , Extractos Vegetales/química
3.
Molecules ; 25(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171936

RESUMEN

In the scenario of promising sources of functional foods and preventive drugs, microalgae and cyanobacteria are attracting global attention. In this review, the current and future role of microalgae as natural sources of functional foods for human health and, in particular, for oral health has been reported and discussed in order to provide an overview on the state of art on microalgal effects on human oral health. It is well known that due to their richness in high-valuable products, microalgae offer good anti-inflammatory, antioxidant, antitumoral, anti-glycemic, cholesterol-lowering, and antimicrobial activity. Moreover, the findings of the present research show that microalgae could also have a significant impact on oral health: several studies agree on the potential application of microalgae for oral cancer prevention as well as for the treatment of chronic periodontitis and different oral diseases with microbial origin. Thus, beneficial effects of microalgae could be implemented in different medical fields. Microalgae and cyanobacteria could represent a potential natural alternative to antibiotic, antiviral, or antimycotic therapies, as well as a good supplement for the prevention and co-adjuvant treatment of different oral diseases. Nevertheless, more studies are required to identify strains of interest, increase overall functioning, and make safe, effective products available for the whole population.


Asunto(s)
Cianobacterias/química , Alimentos Funcionales , Microalgas/química , Salud Bucal , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Anticarcinógenos/química , Anticarcinógenos/farmacología , Antivirales/química , Antivirales/farmacología , Chlorella/química , Suplementos Dietéticos , Humanos , Neoplasias de la Boca/prevención & control , Periodontitis/tratamiento farmacológico , Spirulina/química , Spirulina/clasificación
4.
PLoS One ; 15(5): e0232512, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32365130

RESUMEN

In this work, we want to investigate the impact of different substrates and different environmental condition on the biofilm communities growing on plaster, marble, and mortar substrates inside the Herculaneum Suburban Baths. To do so, we measured environmental conditions and sampled biofilm communities along the walls of the baths and used culture-dependent and -independent molecular techniques (DGGE) to identify the species at each sampling sites. We used the species pool to infer structure and richness of communities within each site in each substrate, and confocal light scanning microscopy to assess the three-dimensional structure of the sampled biofilms. To gather further insights, we built a meta-community network and used its local realizations to analyze co-occurrence patterns of species. We found that light is a limiting factor in the baths environment, that moving along sites equals moving along an irradiation gradient, and that such gradient shapes the community structure, de facto separating a dark community, rich in Bacteria, Fungi and cyanobacteria, from two dim communities, rich in Chlorophyta. Almost all sites are dominated by photoautotrophs, with Fungi and Bacteria relegated to the role of rare species., and structural properties of biofilms are not consistent within the same substrate. We conclude that the Herculaneum suburban baths are an environment-shaped community, where one dark community (plaster) and one dim community (mortar) provides species to a "midway" community (marble).


Asunto(s)
Baños/historia , Biopelículas/crecimiento & desarrollo , Microbiota , Materiales de Construcción/historia , Materiales de Construcción/microbiología , Microbiología Ambiental , Historia Antigua , Humanos , Italia , Microbiota/genética , Microscopía Confocal
5.
Antibiotics (Basel) ; 9(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012849

RESUMEN

Loranthus europaeus is a well-known and important medicinal plant, with a long history of traditional medicine use. Several studies showed that it contains many bioactive compounds with a wide range of pharmacological effects. In light of these past researches, L. europaeus were chosen to consider its potential antimicrobial action. To this aim, different protocols were performed to selectively extract protein compounds, from L. europaeus yellow fruits, and evaluate the antimicrobial activity against four phytopathogenic fungi (Aspergillus niger, Alternaria spp., Penicillium spp., Botritis cinereus) and a number of foodborne bacterial pathogens (Listeria monocytogenes, Staphylococcus aureus strains, Salmonella Typhimurium and Escherichia coli) by using serial dilutions and colony formation assays. Results evidenced no antifungal activity but a notable bactericidal efficiency of a crude protein extract against two foodborne pathogens, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values between 0.2 and 0.5 mg/mL, being S. aureus strains the most susceptible bacteria. Moreover, a strong bactericidal activity against S. aureus M7 was observed by two partially purified protein fractions of about 600 and 60 kDa molecular mass in native conditions. Therefore, these plant protein extracts could be used as natural alternative preventives to control food poisoning diseases and preserve foodstuff avoiding health hazards of chemically antimicrobial applications.

6.
Phytochem Anal ; 30(5): 564-571, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31238388

RESUMEN

INTRODUCTION: Artemisia annua is a small herbaceous plant belonging to the Asteraceae family declared therapeutic by the World Health Organisation, in particular for its artemisinin content, an active ingredient at the base of most antimalarial treatments, used every year by over 300 million people. In the last years, owing to low artemisinin content, research of new ways to increase the yield of the plant matrix has led to the use of the total extract taking advantage from the synergic and stabilising effects of the other components. OBJECTIVE: In this work we evaluated and compared the content of artemisinin and scopoletin in extracts of A. annua collected in the Campania Region (southern Italy), by two different extraction processes. METHODOLOGY: Artemisia annua plants were extracted by traditional maceration (TM) in hydroalcoholic solution as a mother tincture prepared according to the European Pharmacopeia and by pressurised cyclic solid-liquid (PCSL) extraction, a new generation method using the Naviglio extractor. RESULTS: The results showed that the PCSL extraction technique is more effective than traditional methods in extracting both phytochemicals, up to 15 times more, reducing the extraction times, without using solvents or having risks for the operators, the environment and the users of the extracts. CONCLUSION: The Naviglio extractor provides extracts with an artemisinin and scopoletin content eight times higher than the daily therapeutic dose, which should be evaluated for its stability over time and biological properties for possible direct use for therapeutic purposes.


Asunto(s)
Artemisia annua/química , Artemisininas/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Extractos Vegetales/química , Escopoletina/aislamiento & purificación , Extracción en Fase Sólida/métodos , Presión
7.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30848779

RESUMEN

Microalgae biofilms may play an important role in the mitigation and prevention of eutrophication caused by domestic, agricultural and industrial wastewater effluents. Despite their potential, the biofilm development and role in nutrient removal are not well understood. Its clarification requires comprehensive studies of the complex three-dimensional architecture of the biofilm. In this study, we established a multimodal imaging approach to provide key information regarding architecture development and nutrient distribution in the biofilm of two green algae organisms: Chlorella pyrenoidosa and Chlorella vulgaris. Helium ion microscopy (HIM), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed for i) elucidation of spatial arrangement, ii) elemental mapping and iii) 3D chemical imaging of the biofilm. The fine structure of the algal biofilm was resolved by HIM, the evidence of the accumulation of phosphate in hot spots was provided by SEM-EDX and the localization of phosphate oxides granules throughout the whole sample was clarified by ToF-SIMS. The reported results shed light on the phosphorus distribution during Chlorella's biofilm formation and highlight the potential of such correlative approach to solve fundamental question in algal biotechnology research.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Chlorella/metabolismo , Microalgas/metabolismo , Fosfatos/metabolismo , Chlorella/fisiología , Chlorella/ultraestructura , Microalgas/fisiología , Microalgas/ultraestructura , Microscopía/métodos , Fósforo/metabolismo , Espectrometría de Masa de Ion Secundario , Eliminación de Residuos Líquidos
8.
Water Sci Technol ; 80(10): 1832-1843, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32144215

RESUMEN

The effects of autotrophic and mixotrophic conditions on microalgae growth and nutrient removal efficiency from synthetic wastewater by different microalgae were investigated. Although several studies have demonstrated the suitability of microalgae technologies for ammonia-rich wastewater treatment, only a few have been used for treatment of phosphate-rich industrial wastewaters. In this work, six microalgae were cultivated in batch mode in a growth medium with a high phosphate concentration (0.74 Mm PO4 3--P) and different carbon sources (ammonium acetate and sodium bicarbonate) without CO2 supplementation or pH adjustment. Their potential for nutrient removal and biomass generation was estimated. The biomass growth in the reactors was modeled and the data aligned to the Verhulst model with R2 > 0.93 in all cases. Chlorella pyrenoidosa ACUF_808 showed the highest final biomass productivity of 106.21 and 75.71 mg·L-1·d-1 in media with inorganic and organic carbon sources, respectively. The highest phosphorus removal efficiency was 32% with Chlorella vulgaris ACUF_809, while the nitrate removal efficiency in all reactors exceeded 93%. The coupled cultivation of the novel isolated strains of C. pyrenoidosa and C. vulgaris under mixotrophic conditions supplemented with ammonium acetate might be a promising solution for simultaneous nitrate and phosphate removal from phosphorus-rich wastewaters.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Nitrógeno , Nutrientes , Fosfatos , Aguas Residuales
9.
Molecules ; 21(4): 395, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27023497

RESUMEN

The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología , Anacardiaceae/química , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Medicina Tradicional , Neoplasias/genética , Extractos Vegetales/química , Polifenoles/análisis , Polifenoles/química , Semillas/química
10.
Molecules ; 21(1): E38, 2015 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-26712732

RESUMEN

Stevia rebaudiana Bertoni is a small perennial shrub of the Asteraceae (Compositae) family that is native to South America, particularly Brazil and Paraguay, where it is known as "stevia" or "honey leaf" for its powerful sweetness. Several studies have suggested that in addition to their sweetness, steviosides and their related compounds, including rebaudioside A and isosteviol, may offer additional therapeutic benefits. These benefits include anti-hyperglycaemic, anti-hypertensive, anti-inflammatory, anti-tumor, anti-diarrheal, diuretic, and immunomodulatory actions. Additionally, critical analysis of the literature supports the anti-bacterial role of steviosides on oral bacteria flora. The aim of this review is to show the emerging results regarding the anti-cariogenic properties of S. rebaudiana Bertoni. Data shown in the present paper provide evidence that stevioside extracts from S. rebaudiana are not cariogenic. Future research should be focused on in vivo studies to evaluate the effects on dental caries of regular consumption of S. rebaudiana extract-based products.


Asunto(s)
Caries Dental/prevención & control , Stevia/química , Edulcorantes/uso terapéutico , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Estudios Clínicos como Asunto , Caries Dental/etiología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Edulcorantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA