Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hear Res ; 379: 103-116, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31150955

RESUMEN

Many users of bilateral cochlear implants (BiCIs) localize sound sources less accurately than do people with normal hearing. This may be partly due to using two independently functioning CIs with fixed compression, which distorts and/or reduces interaural level differences (ILDs). Here, we investigate the potential benefits of using binaurally coupled, dynamic compression inspired by the medial olivocochlear reflex; an approach termed "the MOC strategy" (Lopez-Poveda et al., 2016, Ear Hear 37:e138-e148). Twelve BiCI users were asked to localize wideband (125-6000 Hz) noise tokens in a virtual horizontal plane. Stimuli were processed through a standard (STD) sound processing strategy (i.e., involving two independently functioning sound processors with fixed compression) and three different implementations of the MOC strategy: one with fast (MOC1) and two with slower contralateral control of compression (MOC2 and MOC3). The MOC1 and MOC2 strategies had effectively greater inhibition in the higher than in the lower frequency channels, while the MOC3 strategy had slightly greater inhibition in the lower than in the higher frequency channels. Localization was most accurate with the MOC1 strategy, presumably because it provided the largest and less ambiguous ILDs. The angle error improved slightly from 25.3° with the STD strategy to 22.7° with the MOC1 strategy. The improvement in localization ability over the STD strategy disappeared when the contralateral control of compression was made slower, presumably because stimuli were too short (200 ms) for the slower contralateral inhibition to enhance ILDs. Results suggest that some MOC implementations hold promise for improving not only speech-in-noise intelligibility, as shown elsewhere, but also sound source lateralization.


Asunto(s)
Implantes Cocleares , Localización de Sonidos/fisiología , Estimulación Acústica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Membrana Basilar/fisiopatología , Implantes Cocleares/estadística & datos numéricos , Compresión de Datos , Procesamiento Automatizado de Datos , Femenino , Pérdida Auditiva Bilateral/fisiopatología , Pérdida Auditiva Bilateral/rehabilitación , Humanos , Masculino , Persona de Mediana Edad , Órgano Espiral/fisiopatología , Reflejo Acústico/fisiología , Complejo Olivar Superior/fisiopatología
2.
Hear Res ; 377: 133-141, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30933705

RESUMEN

The detection of amplitude modulation (AM) in quiet or in noise improves when the AM carrier is preceded by noise, an effect that has been attributed to the medial olivocochlear reflex (MOCR). We investigate whether this improvement can occur without the MOCR by measuring AM sensitivity for cochlear implant (CI) users, whose MOCR effects are circumvented as a result of the electrical stimulation provided by the CI. AM detection thresholds were measured monaurally for short (50 ms) AM probes presented at the onset (early condition) or delayed by 300 ms (late condition) from the onset of a broadband noise. The noise was presented ipsilaterally, contralaterally and bilaterally to the test ear. Stimuli were processed through an experimental, time-invariant sound processing strategy. On average, thresholds were 4 dB better in the late than in the early condition and the size of the improvement was similar for the three noise lateralities. The pattern and magnitude of the improvement was broadly consistent with that for normal hearing listeners [Marrufo-Pérez et al., 2018, J Assoc Res Otolaryngol 19:147-161]. Because the electrical stimulation provided by CIs is independent from the middle-ear muscle reflex (MEMR) or the MOCR, this shows that mechanisms other than the MEMR or the MOCR can facilitate AM detection in noisy backgrounds.


Asunto(s)
Percepción Auditiva , Implantación Coclear/instrumentación , Implantes Cocleares , Ruido/efectos adversos , Personas con Deficiencia Auditiva/rehabilitación , Estimulación Acústica , Adaptación Psicológica , Adolescente , Adulto , Anciano , Umbral Auditivo , Niño , Cóclea/inervación , Estimulación Eléctrica , Femenino , Audición , Humanos , Masculino , Persona de Mediana Edad , Enmascaramiento Perceptual , Personas con Deficiencia Auditiva/psicología , Reflejo , Complejo Olivar Superior/fisiopatología , Factores de Tiempo
3.
Audiol Neurootol ; 21(6): 391-398, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28319951

RESUMEN

BACKGROUND: While hearing aids for a contralateral routing of signals (CROS-HA) and bone conduction devices have been the traditional treatment for single-sided deafness (SSD) and asymmetric hearing loss (AHL), in recent years, cochlear implants (CIs) have increasingly become a viable treatment choice, particularly in countries where regulatory approval and reimbursement schemes are in place. Part of the reason for this shift is that the CI is the only device capable of restoring bilateral input to the auditory system and hence of possibly reinstating binaural hearing. Although several studies have independently shown that the CI is a safe and effective treatment for SSD and AHL, clinical outcome measures in those studies and across CI centers vary greatly. Only with a consistent use of defined and agreed-upon outcome measures across centers can high-level evidence be generated to assess the safety and efficacy of CIs and alternative treatments in recipients with SSD and AHL. METHODS: This paper presents a comparative study design and minimum outcome measures for the assessment of current treatment options in patients with SSD/AHL. The protocol was developed, discussed, and eventually agreed upon by expert panels that convened at the 2015 APSCI conference in Beijing, China, and at the CI 2016 conference in Toronto, Canada. RESULTS: A longitudinal study design comparing CROS-HA, BCD, and CI treatments is proposed. The recommended outcome measures include (1) speech in noise testing, using the same set of 3 spatial configurations to compare binaural benefits such as summation, squelch, and head shadow across devices; (2) localization testing, using stimuli that rove in both level and spectral content; (3) questionnaires to collect quality of life measures and the frequency of device use; and (4) questionnaires for assessing the impact of tinnitus before and after treatment, if applicable. CONCLUSION: A protocol for the assessment of treatment options and outcomes in recipients with SSD and AHL is presented. The proposed set of minimum outcome measures aims at harmonizing assessment methods across centers and thus at generating a growing body of high-level evidence for those treatment options.


Asunto(s)
Implantación Coclear/métodos , Consenso , Sordera/rehabilitación , Audífonos , Pérdida Auditiva Unilateral/rehabilitación , Percepción del Habla , Implantes Cocleares , Sordera/fisiopatología , Pérdida Auditiva Unilateral/fisiopatología , Humanos , Estudios Longitudinales , Ruido , Estudios Prospectivos , Calidad de Vida , Localización de Sonidos , Encuestas y Cuestionarios , Acúfeno , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA