Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Diabetol ; 58(11): 1433-1439, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34091762

RESUMEN

The first reports of a link between thiamine and diabetes date back to the 1940s. Some years later, a role for thiamine deficiency in diabetic neuropathy became evident, and some pilot studies evaluated the putative effects of thiamine supplementation. However, the administration of thiamine and its lipophilic derivative benfotiamine for the treatment of this complication gained consensus only at the end of the '90 s. The first evidence of the beneficial effects of thiamine on microvascular cells involved in diabetic complications dates to 1996: from then on, several papers based on in vitro and animal models have addressed the potential use of this vitamin in counteracting diabetic microangiopathy. A few pilot studies in humans reported beneficial effects of thiamine administration on diabetic nephropathy, but, despite all promising proofs-of-concept, the possible role of thiamine in counteracting development or progression of retinopathy has not been addressed until now. Thiamine is a water-soluble vitamin, rapidly expelled from the body, with no issues of over-dosage or accumulation; unfortunately, it is non-patentable, and neither industry nor independent donors are interested in investing in large-scale randomized controlled clinical trials to investigate its potential in diabetes and its complications. Consequently, science will not be able to disprove a promising hypothesis and, more importantly, diabetic people remain deprived of a possible way to ameliorate their condition.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Nefropatías Diabéticas , Neuropatías Diabéticas , Animales , Diabetes Mellitus/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/etiología , Humanos , Tiamina
2.
Biomedicines ; 9(4)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916491

RESUMEN

Thiamine helps transketolase in removing toxic metabolites, counteracting high glucose-induced damage in microvascular cells, and progression of diabetic retinopathy/nephropathy in diabetic animals. Diabetic subjects show reduced thiamine levels. Hyperglycemia and reduced thiamine availability concur in impairing thiamine transport inside the blood-retinal barrier, with thiamine transporter-2 (THTR2) primarily involved. Here, we examined the behavior of thiamine transporter-1 (THTR1), THTR2, and their transcription factor Sp1 in response to high glucose and altered thiamine availability in renal cells involved in diabetic nephropathy. Human proximal tubule epithelial cells, podocytes, glomerular endothelial, and mesangial cells were exposed to high glucose and/or thiamine deficiency/oversupplementation. Localization and modulation of THTR1, THTR2, and Sp1; intracellular thiamine; transketolase activity; and permeability to thiamine were examined. Reduced thiamine availability and hyperglycemia impaired thiamine transport and THTR2/Sp1 expression. Intracellular thiamine, transketolase activity, and permeability were strongly dependent on thiamine concentrations and, partly, excess glucose. Glomerular endothelial cells were the most affected by the microenvironmental conditions. Our results confirmed the primary role of THTR2 in altered thiamine transport in cells involved in diabetic microvascular complications. Lack of thiamine concurs with hyperglycemia in impairing thiamine transport. Thiamine supplementation could represent a therapeutic option to prevent or slow the progression of these complications.

3.
Diab Vasc Dis Res ; 17(1): 1479164119878427, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31726874

RESUMEN

Thiamine prevents high glucose-induced damage in microvasculature, and progression of retinopathy and nephropathy in diabetic animals. Impaired thiamine availability causes renal damage in diabetic patients. Two single-nucleotide polymorphisms in SLC19A3 locus encoding for thiamine transporter 2 are associated with absent/minimal diabetic retinopathy and nephropathy despite long-term type 1 diabetes. We investigated the involvement of thiamine transporter 1 and thiamine transporter 2, and their transcription factor specificity protein 1, in high glucose-induced damage and altered thiamine availability in cells of the inner blood-retinal barrier. Human endothelial cells, pericytes and Müller cells were exposed to hyperglycaemic-like conditions and/or thiamine deficiency/over-supplementation in single/co-cultures. Expression and localization of thiamine transporter 1, thiamine transporter 2 and transcription factor specificity protein 1 were evaluated together with intracellular thiamine concentration, transketolase activity and permeability to thiamine. The effects of thiamine depletion on cell function (viability, apoptosis and migration) were also addressed. Thiamine transporter 2 and transcription factor specificity protein 1 expression were modulated by hyperglycaemic-like conditions. Transketolase activity, intracellular thiamine and permeability to thiamine were decreased in cells cultured in thiamine deficiency, and in pericytes in hyperglycaemic-like conditions. Thiamine depletion reduced cell viability and proliferation, while thiamine over-supplementation compensated for thiamine transporter 2 reduction by restoring thiamine uptake and transketolase activity. High glucose and reduced thiamine determine impairment in thiamine transport inside retinal cells and through the inner blood-retinal barrier. Thiamine transporter 2 modulation in our cell models suggests its major role in thiamine transport in retinal cells and its involvement in high glucose-induced damage and impaired thiamine availability.


Asunto(s)
Retinopatía Diabética/metabolismo , Células Endoteliales/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Glucosa/toxicidad , Proteínas de Transporte de Membrana/metabolismo , Pericitos/efectos de los fármacos , Vasos Retinianos/efectos de los fármacos , Tiamina/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Microambiente Celular , Técnicas de Cocultivo , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Humanos , Proteínas de Transporte de Membrana/genética , Pericitos/metabolismo , Pericitos/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Transcetolasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA