Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroendocrinol ; 33(5): e12972, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33896057

RESUMEN

Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.


Asunto(s)
Hipotálamo/metabolismo , Folículo Ovárico/metabolismo , Hipófisis/metabolismo , Proopiomelanocortina/metabolismo , Estrés Psicológico/metabolismo , Animales , Cuerpo Lúteo/metabolismo , Corticosterona/metabolismo , Femenino , Hormona del Crecimiento/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Prolactina/metabolismo , Tirotropina/metabolismo
2.
Sci Rep ; 8(1): 2794, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434234

RESUMEN

The roles of kisspeptin signaling outside the hypothalamus in the brain are unknown. We examined here the impact of Kiss1r-deletion on hippocampus-related behaviors of anxiety and spatial learning in adult male mice using two mouse models. In the first, global Kiss1r-null and control mice were gonadectomized (GDX KISS1R-KO). In the second, KISS1R signalling was rescued selectively in gonadotropin-releasing hormone neurons to generate Kiss1r-null mice with normal testosterone levels (intact KISS1R-KO). Intact KISS1R-KO rescue mice were found to spend twice as much time in the open arms of the elevated plus maze (EPM) compared to controls (P < 0.01). GDX KISS1R-KO mice showed a similar but less pronounced trend. No differences were detected between intact KISS1R-KO mice and controls in the open field test (OFT), although a marked reduction in time spent in the centre quadrant was observed for all GDX mice (P < 0.001). No effects of KISS1R deletion or gonadectomy were detected in the Morris water maze. These observations demonstrate that KISS1R signalling impacts upon anxiogenic neural circuits operative in the EPM, while gonadal steroids appear important for anxiety behaviour observed in the OFT. The potential anxiogenic role of kisspeptin may need to be considered in the development of kisspeptin analogs for the clinic.


Asunto(s)
Ansiedad/metabolismo , Kisspeptinas/metabolismo , Animales , Ansiedad/fisiopatología , Hormona Liberadora de Gonadotropina/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Transducción de Señal
3.
Endocrinology ; 157(12): 4794-4802, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27715255

RESUMEN

Using a new tail-tip bleeding procedure and a sensitive ELISA, we describe here the patterns of LH secretion throughout the mouse estrous cycle; in ovariectomized mice; in ovariectomized, estradiol-treated mice that model estrogen-negative and -positive feedback; and in transgenic GNR23 mice that exhibit allele-dependent reductions in GnRH neuron number. Pulsatile LH secretion was evident at all stages of the estrous cycle, with LH pulse frequency being approximately one pulse per hour in metestrous, diestrous, and proestrous mice but much less frequent at estrus (less than one pulse per 4 h). Ovariectomy resulted in substantial increases in basal and pulsatile LH secretion with pulses occurring approximately every 21 minutes. Chronic treatment with negative-feedback, estradiol-filled capsules returned LH pulse frequency to intact follicular phase levels, although pulse amplitude remained elevated. On the afternoon of proestrus, the LH surge was found to begin in a highly variable manner over a 4-hour range, lasting for more than 3 hours. In contrast, ovariectomized, estradiol-treated, positive-feedback mice exhibited a relatively uniform surge onset at approximately 0.5 hour prior to lights out. Gonadectomized wild-type and heterozygous GNR23 (∼200 GnRH neurons) male mice exhibited an LH pulse every 60 minutes. Homozygous GNR23 mice (∼80 GnRH neurons) had very low basal LH concentrations but continued to exhibit small amplitude LH pulses every 90 minutes. These studies provide the first characterization in mice of pulse and surge modes of LH secretion across the estrous cycle and demonstrate that very few GnRH neurons are required for pulsatile LH secretion.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Estradiol/farmacología , Ciclo Estral/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Hipotálamo/citología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Ovariectomía
4.
J Comp Neurol ; 519(17): 3456-69, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21800299

RESUMEN

It is now well established that the kisspeptin neurons of the hypothalamus play a key role in regulating the activity of gonadotropin-releasing hormone (GnRH) neurons. The population of kisspeptin neurons residing in the rostral periventricular region of the third ventricle (RP3V), encompassing the anteroventral periventricular (AVPV) and periventricular preoptic nuclei (PVpo), are implicated in the generation of the preovulatory GnRH surge mechanism and puberty onset in female rodents. The present study examined whether these kisspeptin neurons may express other neuropeptides in the adult female mouse. Initially, the distribution of galanin, neurotensin, met-enkephalin (mENK), and cholecystokinin (CCK)-immunoreactive cells was determined within the RP3V of colchicine-treated mice. Subsequent experiments, using a new kisspeptin-10 antibody raised in sheep, examined the relationship of these neuropeptides to kisspeptin neurons. No evidence was found for expression of neurotensin or CCK by RP3V kisspeptin neurons, but subpopulations of kisspeptin neurons were observed to express galanin and mENK. Dual-labeled RP3V kisspeptin/galanin cells represented 7% of all kisspeptin and 21% of all galanin neurons whereas dual-labeled kisspeptin/mENK cells represented 28-38% of kisspeptin neurons and 58-68% of the mENK population, depending on location within the AVPV or PVpo. Kisspeptin neurons in the arcuate nucleus were also found to express galanin but not mENK. These observations indicate that, like the kisspeptin population of the arcuate nucleus, kisspeptin neurons in the RP3V also co-express a range of neuropeptides. This pattern of co-expression should greatly increase the dynamic range with which kisspeptin neurons can modulate the activity of their afferent neurons.


Asunto(s)
Encefalina Metionina/biosíntesis , Galanina/biosíntesis , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Kisspeptinas/biosíntesis , Neuronas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/química , Núcleo Arqueado del Hipotálamo/metabolismo , Femenino , Hipotálamo/química , Ratones , Neuronas/química , Tercer Ventrículo/química , Tercer Ventrículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA