Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 163: 114866, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182516

RESUMEN

Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.


Asunto(s)
Antimaláricos , Artemisininas , Malaria , Humanos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico
2.
Biomed Pharmacother ; 163: 114783, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121149

RESUMEN

Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-ß-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.


Asunto(s)
Antocianinas , Neoplasias , Humanos , Antocianinas/farmacología , Antocianinas/uso terapéutico , Fitoterapia , Flavonoides/uso terapéutico , Fitoquímicos/farmacología , Quimioprevención , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Extractos Vegetales/farmacología
3.
J Ethnopharmacol ; 300: 115722, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115603

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: A rising resort to herbal therapies in Crohn's disease (CD) alternative treatments has been recently observed due to their remarkable natural efficiency. In this context, the weed plant Ambrosia maritima L., traditionally known as Hachich el Aouinet in Algeria and as Damsissa in Egypt and Sudan, is widely used in North African folk medicine to treat infections, inflammatory diseases, gastrointestinal and urinary tract disturbances, rheumatic pain, respiratory problems, diabetes, hypertension and cancer. AIM OF THE STUDY: To assess an Ambrosia maritima L. phenolic extract for its phenolic profile composition, its potential antioxidant activity in vitro, and its cytoprotective effect on cultured primary human endothelial cells (ECs) stressed with H2O2 and sera from CD patients. MATERIALS AND METHODS: Phenolic compound extraction was performed with a low-temperature method. Extract chemical profile was attained by HPLC-DAD/ESI-MS. The extract in vitro antioxidant activity was assessed using several methods including cupric ion reducing power, DPPH radical scavenging assay, O-Phenanthroline free radical reducing activity, ABTS cation radical decolourisation assay, Galvinoxyl free radicals scavenging assay. Intracellular reactive oxygen species levels were evaluated in human endothelial cells by H2DCFDA, while cell viability was assessed by MTT. RESULTS: The phenolic compounds extraction showed a yield of 17.66% with three di-caffeoylquinic acid isomers detected for the first time in Ambrosia maritima L. Using different analytical methods, a significant in vitro antioxidant activity was reported for the Ambrosia maritima L. extract, with an IC50 value of 14.33 ± 3.86 µg/mL for the Galvinoxyl antioxidant activity method. Challenged with ECs the Ambrosia maritima L. extract showed a biphasic dose-dependent effect on H2O2-treated cells, cytoprotective and antioxidant at low doses, and cytotoxic and prooxidant at high doses, respectively. Viability and ROS levels data also demonstrated a prooxidant and cytotoxic effect of CD sera on cultured ECs. Interestingly, 10 µg/mL of Ambrosia maritima L. extract was able to counteract both CD sera-induced oxidative stress and ECs death. CONCLUSION: Our data indicated Ambrosia maritima L. as a source of bioactive phenolics potentially employable as a natural alternative for CD treatment.


Asunto(s)
Antioxidantes , Enfermedad de Crohn , Ambrosia , Antioxidantes/química , Antioxidantes/farmacología , Muerte Celular , Células Endoteliales , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Especies Reactivas de Oxígeno
4.
Molecules ; 23(9)2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134642

RESUMEN

The aim of this work is the evaluation of a green extraction technology to exploit winery waste byproducts. Specifically, a solid⁻liquid extraction technology (Naviglio Extractor®) was used to obtain polyphenolic antioxidants from the Cagnulari grape marc. The extract was then chemically characterized by spectrophotometric analysis, high-performance liquid chromatography, and mass spectrometry, revealing a total polyphenol content of 4.00 g/L ± 0.05, and the presence of anthocyanins, one of the most representative groups among the total polyphenols in grapes. To investigate potential biological activities of the extract, its ability to counteract hydrogen peroxide-induced oxidative stress and cell death was assessed in primary human endothelial cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, used to assess potential extract cytotoxicity, failed to show any deleterious effect on cultured cells. Fluorescence measurements, attained with the intracellular reactive oxygen species (ROS) probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA), revealed a strong antioxidant potential of the marc extract on the used cells, as indicated by the inhibition of the hydrogen peroxide-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate the Naviglio extraction, as a green technology process, can be used to exploit wine waste to obtain antioxidants which can be used to produce enriched foods and nutraceuticals high in antioxidants.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Vitis/química , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Espectrometría de Masas , Extractos Vegetales/aislamiento & purificación , Polifenoles/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo
5.
Toxicol In Vitro ; 42: 255-262, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28495234

RESUMEN

Green tea consumption has been shown to possess cancer chemopreventive activity. Polyphenol E (PE) is a widely used standardized green tea extract formulation. This study was designed to investigate the impact of PE on prostate cancer cells (PC3), analyze the potential signals involved and elucidate whether anti- or pro-oxidant effects may be implicated. Treatment of PC3 cells with 30 and 100µg/ml PE significantly decreased cell viability and proliferation. At the tested concentrations, PE did not exert any antioxidant activity, eliciting instead a pro-oxidant effect at concentrations 30 and 100µg/ml, which was consistent with the observed PE cytotoxicity. PE-induced cell death was associated with mitochondrial dysfunction and downregulation of Akt activation, thus suggesting their implication in the PE-elicited cell dysfunction. Cell exposure to the ROS scavenger N-Acetyl Cysteine prevented PE-induced ROS increase, pAkt impairment, and cell death, clearly indicating the causative role of ROS in the observed phenomena. Failure of PE to induce PC3 damage in cells overexpressing Akt further confirms its implication in the PE-elicited cell death. Our findings showed an association between the antiproliferative and the pro-oxidant effect elicited by PE on PC3 cells and delineates a molecular signaling pattern potentially implicated in the toxicity of PE towards prostate cancer cells.


Asunto(s)
Catequina/análogos & derivados , Oxidantes/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Té/toxicidad , Catequina/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Regulación hacia Abajo , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Carbonilación Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
6.
PLoS One ; 10(7): e0134690, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26230943

RESUMEN

Epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) are antioxidants present in the green tea, a widely used beverage whose health benefits are largely recognized. Nevertheless, major physicochemical limitations, such as the high instability of catechins, pose important questions concerning their potential pharmacological use. Recent studies indicate that binding of catechins with plasmatic proteins may modulate their plasma concentration, tissue delivery and biological activity. After 5 minutes of incubation with HSA both ECG and EGCG were fully bound to HSA, while after 48h incubation only 41% of EC and 70% of EGC resulted linked. HSA had a strong stabilizing effect on all catechins, which could be found in solution between 29 and 85% even after 48h of incubation. In the absence of HSA, EGC and EGCG disappeared in less than 24h, while ECG and EC were found after 48h at 5 and 50%, respectively. The stabilizing effect of HSA toward EGCG, obtained in aqueous physiological conditions, resulted stronger in comparison to cysteine and HCl, previously reported to stabilize this polyphenol. Because of the multitude of contradictory data concerning in vivo and in vitro antioxidant-based experimentations, we believe our work may shed some light on this debated field of research.


Asunto(s)
Catequina/química , Albúmina Sérica/química , Té/química , Electroforesis Capilar , Humanos , Espectrofotometría Ultravioleta
7.
J Chromatogr A ; 1367: 167-71, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25294295

RESUMEN

The natural antioxidant-associated biological responses appear contradictory since biologically active dosages registered in vitro experiments are considerably higher if compared to concentrations found in vivo. The recent research indicates that natural antioxidants, including the major catechins of green tea epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) form non-covalent complexes with albumin, a crucial aspect that may modulate their plasma concentration, tissue delivery and biological activity. Affinity capillary electrophoresis (ACE) was used to characterize the binding of the four catechins to human serum albumin (HSA) and bovine serum albumin (BSA) at near-physiological conditions: 10 mmol/L phosphate buffer, HEPES 50 mmol/L (pH 7.5), temperature 37°C. The studied flavonoids displayed affinities toward the albumin with binding constants in the range 10(3)-10(5)M(-1), with a greater affinity of catechins toward HSA than BSA (between 3 and 3.5 fold higher). We also confirmed that catechins having a galloyl moiety (ECG and EGCG) have a higher binding affinity toward albumin than the catechins lacking the galloyl moiety (EC and EGC), and that for both albumins the order of affinity is EC

Asunto(s)
Antioxidantes/análisis , Catequina/análisis , Electroforesis Capilar/métodos , Albúmina Sérica/análisis , Té/química , Animales , Antioxidantes/química , Catequina/química , Bovinos , Humanos , Albúmina Sérica/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA