Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Tissue Barriers ; : 2300580, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38179897

RESUMEN

Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.

2.
Am J Clin Nutr ; 112(6): 1438-1447, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778895

RESUMEN

BACKGROUND: Lipid metabolism in pregnancy delivers PUFAs from maternal liver to the developing fetus. The transition at birth to diets less enriched in PUFA is especially challenging for immature, extremely preterm infants who are typically supported by total parenteral nutrition. OBJECTIVE: The aim was to characterize phosphatidylcholine (PC) and choline metabolism in preterm infants and demonstrate the molecular specificity of PC synthesis by the immature preterm liver in vivo. METHODS: This MS-based lipidomic study quantified the postnatal adaptations to plasma PC molecular composition in 31 preterm infants <28 weeks' gestational age. Activities of the cytidine diphosphocholine (CDP-choline) and phosphatidylethanolamine-N-methyltransferase (PEMT) pathways for PC synthesis were assessed from incorporations of deuterated methyl-D9-choline chloride. RESULTS: The concentration of plasma PC in these infants increased postnatally from median values of 481 (IQR: 387-798) µM at enrollment to 1046 (IQR: 616-1220) µM 5 d later (P < 0.001). Direct incorporation of methyl-D9-choline demonstrated that this transition was driven by an active CDP-choline pathway that synthesized PC enriched in species containing oleic and linoleic acids. A second infusion of methyl-D9-choline chloride at day 5 clearly indicated continued activity of this pathway. Oxidation of D9-choline through D9-betaine resulted in the transfer of 1 deuterated methyl group to S-adenosylmethionine. A very low subsequent transfer of this labeled methyl group to D3-PC indicated that liver PEMT activity was essentially inactive in these infants. CONCLUSIONS: This study demonstrated that the preterm infant liver soon after birth, and by extension the fetal liver, was metabolically active in lipoprotein metabolism. The low PEMT activity, which is the only pathway for endogenous choline synthesis and is responsible for hormonally regulated export of PUFAs from adult liver, strongly supports increased supplementation of preterm parenteral nutrition with both choline and PUFAs.


Asunto(s)
Adaptación Fisiológica , Colina/metabolismo , Ácidos Grasos Insaturados/metabolismo , Recien Nacido Extremadamente Prematuro/metabolismo , Fosfatidilcolinas/metabolismo , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Marcaje Isotópico , Masculino , Fosfatidilcolinas/sangre
3.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305510

RESUMEN

Phytoplankton replace phosphorus-containing lipids (P-lipids) with non-P analogues, boosting growth in P-limited oceans. In the model diatom Thalassiosira pseudonana, the substitution dynamics of lipid headgroups are well described, but those of the individual lipids, differing in fatty acid composition, are unknown. Moreover, the behavior of lipids outside the common headgroup classes and the relationship between lipid substitution and cellular particulate organic P (POP) have yet to be reported. We investigated these through the mass spectrometric lipidomics of P-replete (P+) and P-depleted (P-) T. pseudonana cultures. Nonlipidic POP was depleted rapidly by the initiation of P stress, followed by the cessation of P-lipid biosynthesis and per-cell reductions in the P-lipid levels of successive generations. Minor P-lipid degradative breakdown was observed, releasing P for other processes, but most P-lipids remained intact. This may confer an advantage on efficient heterotrophic lipid consumers in P-limited oceans. Glycerophosphatidylcholine (PC), the predominant P-lipid, was similar in composition to its betaine substitute lipid. During substitution, PC was less abundant per cell and was more highly unsaturated in composition. This may reflect underlying biosynthetic processes or the regulation of membrane biophysical properties subject to lipid substitution. Finally, levels of several diglycosylceramide lipids increased as much as 10-fold under P stress. These represent novel substitute lipids and potential biomarkers for the study of P limitation in situ, contributing to growing evidence highlighting the importance of sphingolipids in phycology. These findings contribute much to our understanding of P-lipid substitution, a powerful and widespread adaptation to P limitation in the oligotrophic ocean.IMPORTANCE Unicellular organisms replace phosphorus (P)-containing membrane lipids with non-P substitutes when P is scarce, allowing greater growth of populations. Previous research with the model diatom species Thalassiosira pseudonana grouped lipids by polar headgroups in their chemical structures. The significance of the research reported here is threefold. (i) We described the individual lipids within the headgroups during P-lipid substitution, revealing the relationships between lipid headgroups and hinting at the underlying biochemical processes. (ii) We measured total cellular P, placing P-lipid substitution in the context of the broader response to P stress and yielding insight into the implications of substitution in the marine environment. (iii) We identified lipids previously unknown in this system, revealing a new type of non-P substitute lipid, which is potentially useful as a biomarker for the investigation of P limitation in the ocean.


Asunto(s)
Diatomeas/metabolismo , Fósforo/metabolismo , Estrés Fisiológico , Adaptación Fisiológica , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Lípidos de la Membrana/metabolismo , Océano Pacífico , Fosfolípidos/metabolismo , Fósforo/deficiencia , Agua de Mar/química
4.
Am J Respir Cell Mol Biol ; 57(4): 448-458, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489415

RESUMEN

Maintenance of tissue-specific organ lipid compositions characterizes mammalian lipid homeostasis. The lungs and liver synthesize mixed phosphatidylcholine (PC) molecular species that are subsequently tailored for function. The lungs progressively enrich disaturated PC directed to lamellar body surfactant stores before secretion. The liver accumulates polyunsaturated PC directed to very-low-density lipoprotein assembly and secretion, or to triglyceride stores. In each tissue, selective PC species enrichment mechanisms lie at the heart of effective homeostasis. We tested for potential coordination between these spatially separated but possibly complementary phenomena under a major derangement of lung PC metabolism, pulmonary alveolar proteinosis (PAP), which overwhelms homeostasis and leads to excessive surfactant accumulation. Using static and dynamic lipidomics techniques, we compared (1) tissue PC compositions and contents, and (2) in lungs, the absolute rates of synthesis in both control mice and the granulocyte-macrophage colony-stimulating factor knockout model of PAP. Significant disaturated PC accumulation in bronchoalveolar lavage fluid, alveolar macrophage, and lavaged lung tissue occurred alongside increased PC synthesis, consistent with reported defects in alveolar macrophage surfactant turnover. However, microscopy using oil red O staining, coherent anti-Stokes Raman scattering, second harmonic generation, and transmission electron microscopy also revealed neutral-lipid droplet accumulations in alveolar lipofibroblasts of granular macrophage colony-stimulating factor knockout animals, suggesting that lipid homeostasis deficits extend beyond alveolar macrophages. PAP plasma PC composition was significantly polyunsaturated fatty acid enriched, but the content was unchanged and hepatic polyunsaturated fatty acid-enriched PC content increased by 50% with an accompanying micro/macrovesicular steatosis and a fibrotic damage pattern consistent with nonalcoholic fatty liver disease. These data suggest a hepatopulmonary axis of PC metabolism coordination, with wider implications for understanding and managing lipid pathologies in which compromise of one organ has unexpected consequences for another.


Asunto(s)
Hígado Graso/metabolismo , Hígado/metabolismo , Macrófagos Alveolares/metabolismo , Fosfatidilcolinas/metabolismo , Proteinosis Alveolar Pulmonar/metabolismo , Alveolos Pulmonares/metabolismo , Animales , Hígado Graso/complicaciones , Hígado Graso/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Fosfatidilcolinas/genética , Proteinosis Alveolar Pulmonar/etiología , Proteinosis Alveolar Pulmonar/genética
5.
Acta Paediatr ; 106(3): 430-437, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27886403

RESUMEN

AIM: Respiratory distress syndrome (RDS) is a major cause of mortality and morbidity in premature infants. By the time symptoms appear, it may already be too late to prevent a severe course, with bronchopulmonary dysplasia or mortality. We aimed to develop a rapid test of lung maturity for targeting surfactant supplementation. METHODS: Concentrations of the most surface-active lung phospholipid dipalmitoylphosphatidylcholine and sphingomyelin in gastric aspirates from premature infants were measured by mass spectrometry and expressed as the lecithin/sphingomyelin ratio (L/S). The same aspirates were analysed with mid-infrared spectroscopy. Subsequently, L/S was measured in gastric aspirates and oropharyngeal secretions from another group of premature infants using spectroscopy and the results were compared with RDS development. The 10-minute analysis required 10 µL of aspirate. RESULTS: An L/S algorithm was developed based on 89 aspirates. Subsequently, gastric aspirates were sampled in 136 infants of 24-31 weeks of gestation and 61 (45%) developed RDS. The cut-off value of L/S was 2.2, sensitivity was 92%, and specificity was 73%. In 59 cases, the oropharyngeal secretions had less valid L/S than gastric aspirate results. CONCLUSION: Our rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted RDS with high sensitivity.


Asunto(s)
Pulmón/crecimiento & desarrollo , Fosfatidilcolinas/análisis , Síndrome de Dificultad Respiratoria del Recién Nacido/diagnóstico , Esfingomielinas/análisis , Secreciones Corporales/química , Femenino , Humanos , Recién Nacido , Masculino , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
6.
ISME J ; 10(4): 968-78, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26565724

RESUMEN

Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean.


Asunto(s)
Alphaproteobacteria/metabolismo , Fosfolípidos/química , Fósforo/química , Fitoplancton/metabolismo , Agua de Mar/microbiología , Glicosiltransferasas/metabolismo , Procesos Heterotróficos , Mar Mediterráneo , Océanos y Mares , Fosfatos/química , Fosfolipasas/metabolismo , Filogenia , Microbiología del Agua
7.
BMC Med ; 13: 93, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25902844

RESUMEN

BACKGROUND: Ready-to-use therapeutic foods (RUTF) are lipid-based pastes widely used in the treatment of acute malnutrition. Current specifications for RUTF permit a high n-6 polyunsaturated fatty acid (PUFA) content and low n-3 PUFA, with no stipulated requirements for preformed long-chain n-3 PUFA. The objective of this study was to develop an RUTF with elevated short-chain n-3 PUFA and measure its impact, with and without fish oil supplementation, on children's PUFA status during treatment of severe acute malnutrition. METHODS: This randomized controlled trial in children with severe acute malnutrition in rural Kenya included 60 children aged 6 to 50 months who were randomized to receive i) RUTF with standard composition; ii) RUTF with elevated short chain n-3 PUFA; or iii) RUTF with elevated short chain n-3 PUFA plus fish oil capsules. Participants were followed-up for 3 months. The primary outcome was erythrocyte PUFA composition. RESULTS: Erythrocyte docosahexaenoic acid (DHA) content declined from baseline in the two arms not receiving fish oil. Erythrocyte long-chain n-3 PUFA content following treatment was significantly higher for participants in the arm receiving fish oil than for those in the arms receiving RUTF with elevated short chain n-3 PUFA or standard RUTF alone: 3 months after enrollment, DHA content was 6.3% (interquartile range 6.0-7.3), 4.5% (3.9-4.9), and 3.9% (2.4-5.7) of total erythrocyte fatty acids (P <0.001), respectively, while eicosapentaenoic acid (EPA) content was 2.0% (1.5-2.6), 0.7% (0.6-0.8), and 0.4% (0.3-0.5) (P <0.001). RUTF with elevated short chain n-3 PUFA and fish oil capsules were acceptable to participants and carers, and there were no significant differences in safety outcomes. CONCLUSIONS: PUFA requirements of children with SAM are not met by current formulations of RUTF, or by an RUTF with elevated short-chain n-3 PUFA without additional preformed long-chain n-3 PUFA. Clinical and growth implications of revised formulations need to be addressed in large clinical trials. TRIAL REGISTRATION: Clinicaltrials.gov NCT01593969. Registered 4 May 2012.


Asunto(s)
Suplementos Dietéticos , Comida Rápida , Ácidos Grasos Omega-3/administración & dosificación , Aceites de Pescado/administración & dosificación , Desnutrición/dietoterapia , Enfermedad Aguda , Preescolar , Ácidos Docosahexaenoicos , Método Doble Ciego , Ácido Eicosapentaenoico , Ácidos Grasos Insaturados/sangre , Femenino , Humanos , Lactante , Kenia , Lípidos/sangre , Masculino
8.
J Exp Med ; 202(2): 295-308, 2005 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-16009719

RESUMEN

Plant pollens are an important source of environmental antigens that stimulate allergic responses. In addition to acting as vehicles for foreign protein antigens, they contain lipids that incorporate saturated and unsaturated fatty acids, which are necessary in the reproduction of higher plants. The CD1 family of nonpolymorphic major histocompatibility complex-related molecules is highly conserved in mammals, and has been shown to present microbial and self lipids to T cells. Here, we provide evidence that pollen lipids may be recognized as antigens by human T cells through a CD1-dependent pathway. Among phospholipids extracted from cypress grains, phosphatidyl-choline and phosphatidyl-ethanolamine were able to stimulate the proliferation of T cells from cypress-sensitive subjects. Recognition of phospholipids involved multiple cell types, mostly CD4(+) T cell receptor for antigen (TCR)alphabeta(+), some CD4(-)CD8(-) TCRgammadelta(+), but rarely Valpha24i(+) natural killer-T cells, and required CD1a(+) and CD1d(+) antigen presenting cell. The responding T cells secreted both interleukin (IL)-4 and interferon-gamma, in some cases IL-10 and transforming growth factor-beta, and could provide help for immunoglobulin E (IgE) production. Responses to pollen phospholipids were maximally evident in blood samples obtained from allergic subjects during pollinating season, uniformly absent in Mycobacterium tuberculosis-exposed health care workers, but occasionally seen in nonallergic subjects. Finally, allergic, but not normal subjects, displayed circulating specific IgE and cutaneous weal and flare reactions to phospholipids.


Asunto(s)
Alérgenos/inmunología , Antígenos CD1/inmunología , Cupressus/inmunología , Hipersensibilidad/inmunología , Fosfolípidos/inmunología , Polen/inmunología , Linfocitos T/inmunología , Adulto , Formación de Anticuerpos/inmunología , Presentación de Antígeno/inmunología , Células Cultivadas , Cupressus/química , Citocinas/inmunología , Femenino , Humanos , Inmunoglobulina E/inmunología , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Fosfolípidos/química , Polen/química , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología
9.
FEBS Lett ; 530(1-3): 89-93, 2002 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-12387872

RESUMEN

Deuterated choline-d(9) labelling of IMR-32 cells enabled comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis after 96 h polyunsaturated fatty acid supplementation. Surprisingly, while cell phosphatidylcholine synthesis and remodelling reflected a pattern of polyunsaturated fatty acid accretion, the saturated endonuclear phosphatidylcholine pool was only transiently labelled with polyunsaturates. Periodic endonuclear accumulations of the lipid second messenger diacylglycerol, mobilised from unsaturated phosphatidylinositol or saturated phosphatidylcholine, accompany cell proliferation. Non-specific incorporation into endonuclear phosphatidylcholine and selective removal or remodelling of unsaturated molecular species may form part of a single 'off switch' recycling all endonuclear diacylglycerol accumulations.


Asunto(s)
Fosfatidilcolinas/biosíntesis , Núcleo Celular/metabolismo , Ácidos Grasos Insaturados/administración & dosificación , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA