Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Sci ; 340: 111937, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38043729

RESUMEN

Due to the increasing demand for high-quality and high fiber-yielding cotton (Gossypium spp.), research into the development of stress-resilient cotton cultivars has acquired greater significance. Various biotic and abiotic stressors greatly affect cotton production and productivity, posing challenges to the future of the textile industry. Moreover, the content and quality of cottonseed oil can also potentially be influenced by future environmental conditions. Apart from conventional methods, genetic engineering has emerged as a potential tool to improve cotton fiber quality and productivity. Identification and modification of genome sequences and the expression levels of yield-related genes using genetic engineering approaches have enabled to increase both the quality and yields of cotton fiber and cottonseed oil. Herein, we evaluate the significance and molecular mechanisms associated with the regulation of cotton agronomic traits under both normal and stressful environmental conditions. In addition, the importance of gossypol, a toxic phenolic compound in cottonseed that can limit consumption by animals and humans, is reviewed and discussed.


Asunto(s)
Gossypium , Gosipol , Humanos , Gossypium/metabolismo , Aceite de Semillas de Algodón/metabolismo , Fibra de Algodón , Gosipol/metabolismo , Genómica
2.
Carbohydr Polym ; 269: 118319, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294331

RESUMEN

Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.


Asunto(s)
Pectinas/química , Pectinas/uso terapéutico , Animales , Línea Celular Tumoral , Emulsionantes/química , Humanos , Hidrólisis , Estructura Molecular , Pectinas/farmacología , Plantas/química , Reología , Relación Estructura-Actividad , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA