Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 250: 125897, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481179

RESUMEN

In this work, chitosan (CS), Starch (S), and Molybdenum Disulfide (MoS2) were combined to create a nanocarrier that was utilized to treat breast cancer using the MCF-7 cell line. To analyze the features of the nanocarrier, Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) tests were performed, respectively, to discover physical interactions and chemical bonding. Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and zeta potential analyses were performed and reported to determine the structural characteristics and morphology of nanoparticles, size distribution, and surface charge of nanocarriers, respectively. The average size of the nanocomposite was measured at around 279 nm, and the surface charge of the nanocarrier was determined to be +86.31 mV. The entrapment and drug loading efficiency of nanocarriers were 87.25 % and 46.5 %, respectively, which is an acceptable value. The kinetics and release mode of the drug were investigated, and it was found that the synthesized nanocarrier was sensitive to pH and that its release was stable. The amount of the nanocarriers' toxicity and cell death were evaluated using MTT tests and flow cytometry, respectively. In the present study, the nanocarrier was wholly nontoxic and had anticancer properties against the MCF-7 cell line. This nanocarrier is very important due to its non-toxicity and sensitivity to pH and can be used in drug delivery and medical applications.


Asunto(s)
Neoplasias de la Mama , Quitosano , Curcumina , Nanocompuestos , Nanopartículas , Humanos , Femenino , Curcumina/química , Quitosano/química , Neoplasias de la Mama/tratamiento farmacológico , Almidón , Molibdeno , Nanopartículas/química , Nanocompuestos/química , Concentración de Iones de Hidrógeno , Liberación de Fármacos , Portadores de Fármacos/química , Espectroscopía Infrarroja por Transformada de Fourier
2.
Int J Biol Macromol ; 249: 125788, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37437675

RESUMEN

Curcumin, a natural compound with promising anti-cancerous features, suffers from a number of shortcomings such as low chemical stability, bioavailability, and solubility, which impedes its application as an alternative for conventional cancer therapy. In this study, curcumin comprising Fe2O3/Chitosan/CQDs was fabricated through double emulsion method (W/O/W) for the first time to exploit its anticancer features while alleviating its limitation, making this nanocomposite promising in targeted drug delivery. Chitosan, a hydrophilic biopolymer, has incorporated to constitute an adhesive pH-sensitive matrix that can trap the hydrophobic drug resulting in controlled drug release in cancerous environment. Carbon quantum dots render luminescence and water solubility properties, which is favorable for tracing drug release and bio imaging along with enhancement of biocompatibility. Fe2O3 can improve chemical stability and bioavailability in addition to anti-cancerous property. XRD and FTIR analysis confirmed the physical interaction between the drug and fabricated nano composite in addition to chemical bonding between the prepared nano composite. Matrix and spherical structure of the formed drug is corroborated by FESEM analysis. DLS analysis' results determine the mean size of the nano composite at about 227.2 nm and zeta potential result is indicative of perfect stability of the fabricated drug. Various kinetic models for drug release were fitted to experimental data in order to investigate the drug release in which Korsmeyer-Peppas' model was the predominant release system in cancerous environment. In vitro studies through flow cytometry and MTT assay exerted noticeable cytotoxicity effect on MCF-7 cell lines. It can be deduced from these results that curcumin encapsulated with CS/CQDs/Fe2O3 nanocomposites is an excellent alternative for targeted drug delivery.


Asunto(s)
Neoplasias de la Mama , Quitosano , Curcumina , Nanocompuestos , Puntos Cuánticos , Humanos , Femenino , Quitosano/química , Curcumina/química , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Carbono , Liberación de Fármacos , Nanocompuestos/química
3.
Int J Biol Macromol ; 233: 123621, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773864

RESUMEN

5-Fluorouracil (5-FU) is a cytotoxic drug with a low half-life. These features can cause some problems such as burst drug release and numerous side effects. In the present study, a pH-sensitive nanocomposite of polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)/γ-alumina developed by using water in oil in water (W/O/W) double emulsion method. The fabricated emulsion has been employed as the 5-FU carrier to investigate its effects on drug half-life, side effects, drug loading efficiency (DLE), and drug entrapment efficiency (DEE). Analyzing the FTIR and XRD indicated the successful loading of 5-FU into the nanocarrier and affirmed the synthesized nanocomposite's chemical bonding and crystalline features. Furthermore, by using DLS and Zeta potential assessment, size and undersize distribution, as well as the stability of the drug-loaded nanocomposite were determined, which demonstrated the monodisperse and stable nanoparticles. Moreover, the nanocomposites with spherical shapes and homogeneous surfaces were shown in FE-SEM, which indicated good compatibility for the constituents of the nanocomposites. Moreover, by employing BET analysis the porosity has been investigated. Drug release pattern was studied, which indicated a controlled drug release behavior with above 96 h drug retention. Besides, the loading and entrapment efficiencies were obtained 44 % and 86 %, respectively. Furthermore, the curve fitting technique has been employed and the predominant release mechanism has been determined to evaluate the best-fitted kinetic models. MTT assay and flow cytometry assessment has been carried out to investigate the cytotoxic effects of the fabricated drug-loaded nanocomposite on MCF-7 and normal cells. The results showed enhanced cytotoxicity and late apoptosis for the PVP/CMC/γ-alumina/5-FU. Based on the MTT assay outcomes on normal cell lines (L929), which indicated above 90 % cell viability, the biocompatibility and biosafety of the synthesized nanocarrier have been confirmed. Moreover, due to the porosity of the PVP/CMC/γ-alumina, this nanocarrier can exploit from high specific surface area and be more sensitive to environmental conditions such as pH. These outcomes propose that the novel pH-sensitive PVP/CMC/γ-alumina nanocomposite can be a potential candidate for drug delivery applications, especially for cancer therapy.


Asunto(s)
Antineoplásicos , Fluorouracilo , Fluorouracilo/química , Carboximetilcelulosa de Sodio/química , Porosidad , Povidona , Óxido de Aluminio/farmacología , Emulsiones , Agua , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química , Liberación de Fármacos
4.
Int J Biol Macromol ; 226: 159-171, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36435458

RESUMEN

Although quercetin (QC) has valuable advantages, its low water solubility and poor permeability have limited its utilization as an anticancer drug. In this study, hydrogel nanocomposite of chitosan (CS), halloysite (HNT), and graphitic­carbon nitride (g-C3N4) was prepared and loaded by QC using a water in oil in water emulsification process to attain QC sustained-release. Using g-C3N4 in the HNT/CS hydrogel solution enhanced the entrapment effectiveness (EE %) by up to 86 %. The interactions between QC and nanoparticles caused the nanocomposite pH-responsive behavior that assists in minimizing the side effect of the anticancer agent by controlling the burst release of QC at neutral conditions. According to DLS analysis, the size of the QC-loaded nanovehicle was 454.65 nm, showing that nanoparticles are highly monodispersed, which also was approved by FE-SEM. Additionally, Zeta potential value for the fabricated drug-loaded nanocarrier is +55.23 mV displaying that nanoparticles have good stability. The hydrogel nanocomposite structure's completeness was shown by FTIR pattern, and quercetin was included into the designed delivery system based on XRD data. Besides, the drug release profile indicated that a targeted sustained-release and pH-sensitive release of anticancer drug with the 96-hour extended-release were noticed. In order to comprehend the process of QC release at pH 5.4 and 7.4, four kinetic models were employed to find the best-suited model according to the acquired release data. Finally, the MTT experiment revealed considerable cytotoxicity against breast cancer cells, MCF-7 cell line was experimented in vitro, for the CS/HNT/g-C3N4 targeted delivery system in comparison to QC as a free drug. According to the above description, the CS/HNT/g-C3N4 delivery platform is a unique pH-sensitive drug delivery system for anticancer purposes that improves loading as well as sustained-release of quercetin.


Asunto(s)
Antineoplásicos , Quitosano , Nanopartículas , Neoplasias , Humanos , Células MCF-7 , Quercetina/farmacología , Arcilla , Preparaciones de Acción Retardada/farmacología , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Liberación de Fármacos , Portadores de Fármacos
5.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080138

RESUMEN

Today, cancer treatment is an important issue in the medical world due to the challenges and side effects of ongoing treatment procedures. Current methods can be replaced with targeted nano-drug delivery systems to overcome such side effects. In the present work, an intelligent nano-system consisting of Chitosan (Ch)/Gamma alumina (γAl)/Fe3O4 and 5-Fluorouracil (5-FU) was synthesized and designed for the first time in order to influence the Michigan Cancer Foundation-7 (MCF-7) cell line in the treatment of breast cancer. Physico-chemical characterization of the nanocarriers was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). SEM analysis revealed smooth and homogeneous spherical nanoparticles. The high stability of the nanoparticles and their narrow size distribution was confirmed by DLS. The results of the loading study demonstrated that these nano-systems cause controlled, stable, and pH-sensitive release in cancerous environments with an inactive targeting mechanism. Finally, the results of MTT and flow cytometry tests indicated that this nano-system increased the rate of apoptosis induction on cancerous masses and could be an effective alternative to current treatments.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Óxido de Aluminio/farmacología , Quitosano/química , Portadores de Fármacos/química , Fluorouracilo/farmacología , Humanos , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Int J Biol Macromol ; 183: 600-613, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33932424

RESUMEN

pH-sensitive drug delivery systems based on amphiphilic copolymers constitute a promising strategy to overcome some challenges to cancer treatment. In the present study, quercetin-loaded chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite was fabricated through a double oil in water emulsification method for the first time. γ-Alumina was incorporated to improve the drug loading efficiency and release behavior of polyvinylpyrrolidone and chitosan copolymeric hydrogel. γ-Alumina nanoparticles were obtained by the sol-gel method with a nanoporous structure, high surface area, and hydroxyl-rich surface. Quercetin, a natural anticancer agent, was loaded into the nanocomposite as a drug model. XRD and FTIR analyses confirmed the crystalline properties and chemical bonding of the prepared nanocomposite. The size of drug-loaded nanocomposites was 141 nm with monodisperse particle distribution, having a spherical shape approved by DLS analysis and FE-SEM, respectively. Incorporating γ-Alumina nanoparticles improved the encapsulation efficiency up to 95%. Besides, swelling study and the quercetin release profile demonstrated that γ-Alumina ameliorated pH sensitivity of nanocomposite and a targeted controlled release was obtained. Various release kinetic models were applied to the experimental release data to study the mechanism of drug release. Through MTT assay and flow cytometry, the quercetin-loaded nanocomposite showed significant cytotoxicity on MCF-7 breast cancer cells. Also, the enhanced apoptotic cell death confirmed the anticancer activity of γ-Alumina. These results suggest that the chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite is a novel pH-sensitive drug delivery system for anticancer applications.


Asunto(s)
Óxido de Aluminio/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Quitosano/síntesis química , Portadores de Fármacos , Nanoporos , Povidona/síntesis química , Quercetina/farmacología , Óxido de Aluminio/química , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/patología , Quitosano/análogos & derivados , Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Cinética , Células MCF-7 , Povidona/análogos & derivados , Quercetina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA