Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 82(1): 62-74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30741125

RESUMEN

Campomanesia xanthocarpa leaves are used as tea to treat diarrhea, inflammation, and hypercholesterolemia. Some pharmacological studies noted its beneficial uses of C. xanthocarpa; however, few investigations examined the toxicological profile of this plant. The aim of this study was to determine the chemical composition, genotoxic, and mutagenic potential of an aqueous extract of C. xanthocarpa leaves (CxAE), and potential protective effects against oxidative damage. Phytochemical constituents were determined using HPLC, and antioxidant effect in vitro was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. Genotoxic effects and chromosomic mutations were assessed using comet assay and micronucleus (MN) test in Wistar rats treated with CxAE at 250, 500 or 1000 mg/kg for 7 consecutive days. Lipid peroxidation and antioxidant enzyme activities were measured in several tissues. CxAE induced mutations in TA98, TA97a, and TA102 strains. However, in the presence of metabolic activation, data were negative for all strains tested. Lack of mutagenicity was also observed in the MN test. This extract did not induce DNA damage, except when the highest concentration was used. DNA oxidative damage induced by hydrogen peroxide (H2O2) decreased in blood after treatment with CxAE. Lipid peroxidation levels were reduced while superoxide dismutase (SOD) activity increased in kidneys. The inhibitory concentration of CxAE required to lower DPPH levels to 50% was 38.47 ± 2.06 µg/ml. In conclusion, frameshift and oxidative mutations were observed only in the absence of metabolic activation which may be attributed to the presence of flavonoids such as quercetin. It is of interest that CxAE also showed protective effects against DNA oxidative damage associated with presence of ellagic acid, a phenolic acid with antioxidant activities. CxAE did not induce in vivo mutagenicity, suggesting that this extract poses a low toxic hazard over the short term.


Asunto(s)
Myrtaceae/toxicidad , Estrés Oxidativo , Animales , Compuestos de Bifenilo , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Masculino , Pruebas de Micronúcleos , Myrtaceae/química , Picratos , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Hojas de la Planta/química , Ratas , Ratas Wistar
2.
J Toxicol Environ Health A ; 78(18): 1170-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26383782

RESUMEN

Arrabidaea chica Verlot (Bignoniaceae) has been used as a medicinal herb to treat anemia, hemorrhage, inflammation, intestinal colic, hepatitis, and skin infections in the Brazilian Amazon region. Studies have demonstrated the healing properties of extracts obtained from A. chica leaves, which contain anthocyanins and flavonoids. However, few investigations have assessed the safe use of this plant species. In this study, mutagenic and genotoxic effects of a crude aqueous extract, a butanolic fraction, and aqueous waste from A. chica leaves were evaluated using the Salmonella/microsome assay in TA98, TA97a, TA100, TA102, and TA1535 strains and the alkaline comet assay in Chinese hamster ovary (CHO) cell culture with and without metabolic activation. The crude aqueous extract, butanolic fraction, and aqueous waste were not mutagenic in any of the Salmonella typhimurium strains tested, and showed negative responses for genotoxicity in CHO cells. High-performance liquid chromatography (HPLC) analysis indicated the presence of phenolic acids and flavonoids such as rutin and luteolin. The lack of mutagenic/genotoxic effects might be due to phytochemical composition with high concentrations of known anti-inflammatory compounds. Thus, the crude aqueous extract, butanolic fraction, and aqueous waste from A. chica leaves do not appear to pose short-term genotoxic risks.


Asunto(s)
Bignoniaceae/química , Extractos Vegetales/farmacología , Animales , Células CHO , Cromatografía Líquida de Alta Presión , Ensayo Cometa , Cricetulus , Daño del ADN , Microsomas/efectos de los fármacos , Mutágenos/farmacología , Extractos Vegetales/efectos adversos , Hojas de la Planta/química , Plantas Medicinales/efectos adversos , Plantas Medicinales/química , Salmonella typhimurium/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA