RESUMEN
The association of plant beneficial Azospirillum and Bacillus spp. strains expressing different sets of PGP traits may have complementary or supplementary effects on host plants. In the present investigation, A. formosense and Bacillus spp. strains showing diverse PGP traits (IAA production, nitrogenase activity, phosphate, zinc and potassium solubilization, siderophores, antagonism against phytopathogens, osmotic stress tolerance, etc.) were assessed for compatibility by cross-streaking and co-culturing. Under co-culture (Azospirillum + Bacillus), a significant increase in the expression of PGP traits, nitrogenase activity (up to 89%), phosphate solubilization (upto 236%), siderophore production (upto 20%) was observed as compared to individual Azospirillum culture, indicating synergistic effect of co-culture. IAA production was higher in Azospirillum sp. strains as compared to Bacillus spp. strains, when cultured individually; however, when co-cultured, the IAA levels were in the mid-range indicating the contributory effects of compatible strains. The effect of individual Azospirillum and Bacillus strains and their co-inoculation was also assessed on the growth of pearl millet at early stages under moisture-deficit stress imposed using PEG6000 (0, 10, and 20%). Co-inoculation enhanced seed germination (up to 10, 3, and 6% increase under 0, 10, and 20% PEG, respectively, over individual Azospirillum treatment), root traits (increased root hair density and lateral branches), and seedling vigor indices (up to 22, 32, 43% increase in seed vigor index I and 8, 14, and 10% increase in seed vigor index II under 0, 10, 20% PEG, respectively, over individual Azospirillum treatment) under normal as well as moisture-deficit conditions suggesting the role of Bacillus spp. strains in better adaptation of the plants to stress and higher yield potential. The synergistic effect of co-cultured Azospirillum and Bacillus strains on PGP traits indicated metabolic interplay between the two strains which needs to be further understood. The positive effect of co-inoculation on plant growth under moisture-deficit stress indicated the promise of Azospirillum and Bacillus as a synergistic bioformulation for combating nutrient and drought stress in pearl millet, particularly in nutrient-poor dryland agricultural systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03503-4.
RESUMEN
Phosphorus (P) demand is likely to increase especially in legumes to harness greater benefits of nitrogen fixation under elevated CO2 condition. In the following study, seed yield and seed P uptake in cowpea increased by 26.8% and 20.9%, respectively, under elevated CO2 level. With an increase in phosphorus dose up to 12 mg kg-1, seed yield enhanced from 2.6 to 5.4 g plant-1. P application and cyanobacterial inoculation increased the microbial activity of soil, leading to increased availability of P. Under elevated CO2 condition, microbial activity, measured as dehydrogenase, acid phosphatase, and alkaline phosphatase activities showed stimulation. Soil available P also increased under elevated CO2 condition and was stimulated by both P application and cyanobacterial inoculation. Higher P uptake in elevated CO2 condition led to lower values of inorganic P in soil. Stepwise regression analysis showed that aboveground P uptake, soil available P, and alkaline phosphatase activity of soil influenced the yield while available P, and organic and inorganic P influenced the aboveground P uptake of the crop. This study revealed that under elevated CO2 condition, P application and cyanobacterial inoculation facilitated P uptake and yield, mediated through enhanced availability of nutrients, in cowpea crop.
Asunto(s)
Dióxido de Carbono/metabolismo , Cianobacterias/metabolismo , Fósforo/metabolismo , Vigna/metabolismo , Carbono , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Nitrógeno , Fijación del Nitrógeno , Análisis de Regresión , Suelo/química , Vigna/crecimiento & desarrolloRESUMEN
Microalgae possess the ability to grow and glean nutrients from wastewater; such wastewater-grown biomass can be used as a biofertilizer for crops. The present investigation was undertaken to evaluate two formulations (formulation with unicellular microalgae (MC1) and formulation with filamentous microalgae (MC2); T4 and T5, respectively), prepared using wastewater-grown microalgal biomass, as a biofertilizer (after mixing with vermiculite/compost as a carrier) in wheat crop (Triticum aestivum L. HD2967) under controlled conditions. The highest values of available nitrogen (N), phosphorus (P), and potassium (K) in soil and nitrogen-fixing potential were recorded in treatment T5 (75% N + full-dose PK + formulation with filamentous microalgae (MC2). Microbial biomass carbon was significantly enhanced by 31.8-67.0% in both the inoculated treatments over control (recommended dose of fertilizers), with highest values in T4 (75% N + full-dose PK + formulation with unicellular microalgae (MC1)). Both the microalgal formulations significantly increased the N, P, and K content of roots, shoots, and grains, and the highest total N content of 3.56% in grains was observed in treatment T5. At harvest stage, the treatments inoculated with microalgal formulations (T4 and T5) recorded a 7.4-33% increase in plant dry weight and up to 10% in spike weight. The values of 1000-grain weight showed an enhancement of 5.6-8.4%, compared with T1 (recommended doses of fertilizers). A positive correlation was observed between soil nutrient availability at mid crop stage and plant biometrical parameters at harvest stage. This study revealed the promise of such microalgal consortia as a biofertilizer for 25% N savings and improved yields of wheat crop.
Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Fertilizantes/análisis , Microalgas/química , Suelo/química , Triticum/crecimiento & desarrollo , Aguas Residuales , Biomasa , Carbono/análisis , Productos Agrícolas/química , Microalgas/crecimiento & desarrollo , Nitrógeno/análisis , Fósforo/análisis , Triticum/químicaRESUMEN
The genus Anabaena is known to be a rich source of bioactive metabolites, but the biocontrol potential of this genus, mediated through hydrolytic enzymes is less investigated. In our investigation, five Anabaena strains - A. laxa RPAN8, A. iyengarii RPAN9, A. variabilis RPAN59 and A. oscillarioides RPAN69 (with A. variabilis RPAN16 serving as negative control) were evaluated in time course studies involving incubation under three levels of phosphorus and pH conditions. Total chlorophyll, proteins, chitosanase, endoglucanase and CMCase activity were measured and inhibition assayed against phytopathogenic fungi. The four weeks old RPAN69 culture showed significantly higher chlorophyll which was 41% higher than control. This was also linked with an enhancement of 18.26% and 9.18% in chitosanase and CMCase activity respectively over control in the treatment involving half dose of phosphorus. Chlorophyll and CMCase activity showed a high degree of correlation with highest values at pH 9.5. A pH of 5.5 was the most suitable condition for the maximum activity of chitosanase for all the strains except RPAN16. The strains RPAN8 and RPAN9 showed the highest activity of endoglucanase at pH 5.5 while the other strains exhibited maximum activity at pH 7.5. This study provides insight into the role of P and pH in modulating fungicidal activity in different Anabaena strains, which can be valuable for enhancing their efficiency as a biocontrol agent.
Asunto(s)
Anabaena/efectos de los fármacos , Hongos/crecimiento & desarrollo , Control Biológico de Vectores , Fósforo/farmacología , Enfermedades de las Plantas/microbiología , Anabaena/clasificación , Anabaena/enzimología , Anabaena/crecimiento & desarrollo , Antibiosis , Celulasa/metabolismo , Clorofila/metabolismo , Hongos/patogenicidad , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Pythium/crecimiento & desarrollo , Pythium/patogenicidad , Rhizoctonia/crecimiento & desarrollo , Rhizoctonia/patogenicidadRESUMEN
The genus Chlorella is a widely employed microalga for biodiesel, as it can be grown using photo/mixo/heterotrophic mode of cultivation. The present investigation was undertaken with the hypothesis that addition of different substrates (amino acids, carbon sources, vitamins) along with reducing agents may aid in diverting Acetyl CoA to malonyl CoA or fatty acid biosynthesis, under mixotrophic conditions in Chlorella sorokiniana. Preliminary investigations undertaken with two reducing agents individually (sodium thiosulphate and methyl viologen) along with selected substrates revealed the promise of sodium thiosulphate (1%) in enhancing lipid accumulation significantly. Further, the role of inclusion of twelve substrates and sodium thiosulphate revealed that supplementation with tryptophan (0.1%) recorded 57.28% enhancement in lipid productivity on 4(th) day. Highest values of lipid productivity of 33% were recorded on 8(th) day in 0.1% glucose supplemented medium containing sodium thiosulphate. Fatty Acid Methyl Ester (FAME) profiles generated revealed significant reduction in the content of Poly unsaturated fatty acids (PUFA) and enhanced Mono unsaturated fatty acids (MUFA) (especially oleic acid) in the treatments involving tryptophan, Vitamin B12, sodium pyruvate and glucose. This study reveals the promise of using sodium thiosulphate along with selected substrate for enriching the quality and quantity of lipids, which can be valuable for exploiting algae as a source of biodiesel.
RESUMEN
Microscopic investigations were undertaken to decipher the diversity in the lotic algal communities from acidic waters (pH 2.4-3.2) flowing overland in sheets and channels at an acid mine drainage (AMD) barrens near Kylertown, PA, USA. Microscopic observations, supplemented with taxonomic keys, aided in identification of the dominant algae, and measurement of carbon from adjacent soils was undertaken. The unicellular protist Euglena sp. was most abundant in slower flowing waters (i.e., pool near point of emergence and surficial flow sheets), while Ulothrix sp. was most abundant in faster flowing water from the central stream channel. A diverse range of unicellular microalgae such as Chlorella, Cylindrocystis, Botryococcus, and Navicula and several filamentous forms identified as Microspora, Cladophora, and Binuclearia were also recorded. The observed high algal diversity may be related to the long duration of AMD flow at this site which has led to the development of adapted algal communities. The comparatively higher carbon content in soil materials adjacent to slower flowing water sampling locations provides evidence for the important role of algae as primary producers in this extreme environment.