Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Rep (Amst) ; 41: e00830, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332899

RESUMEN

Current research endeavours are progressively focussing towards discovering sustainable methods for synthesising eco-friendly materials. In this environment, nanotechnology has emerged as a key frontier, especially in bioremediation and biotechnology. A few areas of nanotechnology including membrane technology, sophisticated oxidation processes, and biosensors. It is possible to create nanoparticles (NPs) via physical, chemical, or biological pathways in a variety of sizes and forms. These days, the investigation of plants as substitutes for NP synthesis methods has drawn a lot of interest. Toxic water contaminants such as methyl blue have been shown to be removed upto 70% by nanoparticles. In our article, we aimed at focussing the environmental sustainability and cost-effectiveness towards the green synthesis of nanoparticles. Furthermore it offers a comprehensive thorough summary of green NP synthesis methods which can be distinguished by their ease of use, financial sustainability, and environmentally favourable utilization of plant extracts. This study highlights how green synthesis methods have the potential to transform manufacturing of NPs while adhering to environmental stewardship principles and resource efficiency.

2.
Biomed Pharmacother ; 155: 113658, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162370

RESUMEN

Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Óxido de Zinc , Óxidos/toxicidad , Cobre , Plata , Especies Reactivas de Oxígeno , Óxido de Magnesio , Dióxido de Silicio , Nanopartículas del Metal/toxicidad , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Citocinas , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA