Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 40(16): e107247, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34031901

RESUMEN

Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Apicoplastos , Ácido Pantoténico/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética
2.
Malar J ; 18(1): 86, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890151

RESUMEN

BACKGROUND: The malarial parasite Plasmodium falciparum is an auxotroph for purines, which are required for nucleic acid synthesis during the intra-erythrocytic developmental cycle (IDC) of the parasite. The capabilities of the parasite and extent to which it can use compensatory mechanisms to adapt to purine deprivation were studied by examining changes in its metabolism under sub-optimal concentrations of hypoxanthine, the primary precursor utilized by the parasite for purine-based nucleic acid synthesis. METHODS: The concentration of hypoxanthine that caused a moderate growth defect over the course of one IDC was determined. At this concentration of hypoxanthine (0.5 µM), transcriptomic and metabolomic data were collected during one IDC at multiple time points. These data were integrated with a metabolic network model of the parasite embedded in a red blood cell (RBC) to interpret the metabolic adaptation of P. falciparum to hypoxanthine deprivation. RESULTS: At a hypoxanthine concentration of 0.5 µM, vacuole-like structures in the cytosol of many P. falciparum parasites were observed after the 24-h midpoint of the IDC. Parasites grown under these conditions experienced a slowdown in the progression of the IDC. After 72 h of deprivation, the parasite growth could not be recovered despite supplementation with 90 µM hypoxanthine. Simulations of P. falciparum metabolism suggested that alterations in ubiquinone, isoprenoid, shikimate, and mitochondrial metabolism occurred before the appearance of these vacuole-like structures. Alterations were found in metabolic reactions associated with fatty acid synthesis, the pentose phosphate pathway, methionine metabolism, and coenzyme A synthesis in the latter half of the IDC. Furthermore, gene set enrichment analysis revealed that P. falciparum activated genes associated with rosette formation, Maurer's cleft and protein export under two different nutrient-deprivation conditions (hypoxanthine and isoleucine). CONCLUSIONS: The metabolic network analysis presented here suggests that P. falciparum invokes specific purine-recycling pathways to compensate for hypoxanthine deprivation and maintains a hypoxanthine pool for purine-based nucleic acid synthesis. However, this compensatory mechanism is not sufficient to maintain long-term viability of the parasite. Although P. falciparum can complete a full IDC in low hypoxanthine conditions, subsequent cycles are disrupted.


Asunto(s)
Adaptación Fisiológica , Hipoxantina/metabolismo , Plasmodium falciparum/fisiología , Animales , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Metabolómica , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Sobrevida , Factores de Tiempo
3.
PLoS Pathog ; 9(9): e1003655, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086138

RESUMEN

The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome--a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.


Asunto(s)
Apicoplastos/metabolismo , Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Apicoplastos/genética , Liasas de Carbono-Azufre/genética , Humanos , Proteínas Hierro-Azufre/genética , Plasmodium falciparum/citología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Terpenos/metabolismo
4.
J Am Chem Soc ; 132(44): 15565-72, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20958070

RESUMEN

Peptidylglycine α-hydroxylating monooxygenase (PHM) catalyzes the stereospecific hydroxylation of the Cα of C-terminal glycine-extended peptides and proteins, the first step in the activation of many peptide hormones, growth factors, and neurotransmitters. The crystal structure of the enzyme revealed two nonequivalent Cu sites (Cu(M) and Cu(H)) separated by ∼11 Å. In the resting state of the enzyme, Cu(M) is coordinated in a distorted tetrahedral geometry by one methionine, two histidines, and a water molecule. The coordination site of the water molecule is the position where external ligands bind. The Cu(H) has a planar T-shaped geometry with three histidines residues and a vacant position that could potentially be occupied by a fourth ligand. Although the catalytic mechanism of PHM and the role of the metals are still being debated, Cu(M) is identified as the metal involved in catalysis, while Cu(H) is associated with electron transfer. To further probe the role of the metals, we studied how small molecules such as nitrite (NO(2)(-)), azide (N(3)(-)), and carbon monoxide (CO) interact with the PHM copper ions. The crystal structure of an oxidized nitrite-soaked PHMcc, obtained by soaking for 20 h in mother liquor supplemented with 300 mM NaNO(2), shows that nitrite anion coordinates Cu(M) in an asymmetric bidentate fashion. Surprisingly, nitrite does not bind Cu(H), despite the high concentration used in the experiments (nitrite/protein > 1000). Similarly, azide and carbon monoxide coordinate Cu(M) but not Cu(H) in the PHMcc crystal structures obtained by cocrystallization with 40 mM NaN(3) and by soaking CO under 3 atm of pressure for 30 min. This lack of reactivity at the Cu(H) is also observed in the reduced form of the enzyme: CO binds Cu(M) but not Cu(H) in the structure of PHMcc obtained by exposure of a crystal to 3 atm CO for 15 min in the presence of 5 mM ascorbic acid (reductant). The necessity of Cu(H) to maintain its redox potential in a narrow range compatible with its role as an electron-transfer site seems to explain the lack of coordination of small molecules to Cu(H); coordination of any external ligand will certainly modify its redox potential.


Asunto(s)
Cobre/química , Oxigenasas de Función Mixta/química , Complejos Multienzimáticos/química , Azidas/química , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA