Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Recognit ; 32(2): e2760, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30084213

RESUMEN

Calcium ions act like ubiquitous second messengers in a wide amount of cellular processes. In cardiac myocytes, Ca2+ handling regulates the mechanical contraction necessary to the heart pump function. The field of intracellular and intercellular Ca2+ handling, employing in vitro models of cardiomyocytes, has become a cornerstone to understand the role and adaptation of calcium signalling in healthy and diseased hearts. Comprehensive in vitro systems and cell-based biosensors are powerful tools to enrich and speed up cardiac phenotypic and drug response evaluation. We have implemented a combined setup to measure contractility and calcium waves in human embryonic stem cells-derived cardiomyocyte 3D clusters, obtained from embryoid body differentiation. A combination of atomic force microscopy to monitor cardiac contractility, and sensitive fast scientific complementary metal-oxide-semiconductor camera for epifluorescence video recording, provided correlated signals in real time. To speed up the integrated data processing, we tested several post-processing algorithms, to improve the automatic detection of relevant functional parameters. The validation of our proposed method was assessed by caffeine stimulation (10mM) and detection/characterization of the induced cardiac response. We successfully report the first simultaneous recording of cardiac contractility and calcium waves on the described cardiac 3D models. The drug stimulation confirmed the automatic detection capabilities of the used algorithms, measuring expected physiological response, such as elongation of contraction time and Ca2+ cytosolic persistence, increased calcium basal fluorescence, and transient peaks. These results contribute to the implementation of novel, integrated, high-information, and reliable experimental systems for cardiac models and drug evaluation.


Asunto(s)
Biofisica/métodos , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Señalización del Calcio/fisiología , Humanos
2.
Med Chem ; 12(3): 211-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26516779

RESUMEN

Since ancient time, India is a well known subcontinent for medicinal plants where diversity of plants is known for the treatment of many human disorders. Grewia asiatica is a dicot shrub belonging to the Grewioideae family and well known for its medicinally important fruit commonly called Falsa. G. asiatica, a seasonal summer plant is distributed in the forest of central India, south India, also available in northern plains and western Himalaya up to the height of 3000 ft. Fruits of G. asiatica are traditionally used as a cooling agent, refreshing drink, anti-inflammatory agent and for the treatment of some urological disorders. Recent advancement of Falsa researches concluded its antimicrobial and anti-diabetic activity. Since ancient time medicinal plants are traditionally used for the treatment of different diseases G. asiatica fruit is the edible and tasty part of the plant, now considered as a valuable source of unique natural product for the development of medicines which are used in different disease conditions like anti-diabetic, anti-inflammatory, anti-cancerous and antimicrobial. Now a days, G. asiatica is being used in different Ayurvedic formulation for the cure of different types of diseases. Different pharmacological investigations reveal the presence of phenols, saponnins, flavonoids and tannins compound in the fruits. Present review highlights the phytopharmacological and different traditional use of G. asiatica which is mentioned in ancient Ayurvedic texts. This review stimulates the researchers and scientists for further research on G. asiatica.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Grewia/química , Hipoglucemiantes/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Bacterias/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Hongos/efectos de los fármacos , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Neoplasias/tratamiento farmacológico
3.
Molecules ; 16(9): 7428-57, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21886093

RESUMEN

Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L.) cultivated in Lednice (climatic area T4), South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine) were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin), was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis). The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.


Asunto(s)
Aminoácidos/química , Antioxidantes/química , Frutas/química , Extractos Vegetales/química , Polifenoles/química , Análisis de Componente Principal , Prunus/química , Algoritmos , Benzotiazoles/química , Compuestos de Bifenilo/química , Análisis por Conglomerados , Biología Computacional , Radicales Libres/química , Pool de Genes , Picratos/química , Ácidos Sulfónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA