Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Struct Funct ; 225(1): 441-459, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31894406

RESUMEN

Because of their high prevalence, heterogeneous clinical presentation, and wide-ranging sequelae, concussions are a challenging neurological condition, especially in children. Shearing forces transmitted across the brain during concussions often result in white matter damage. The neuropathological impact of concussions has been discerned from animal studies and includes inflammation, demyelination, and axonal loss. These pathologies can overlap during the sub-acute stage of recovery. However, due to the challenges of accurately modeling complex white matter structure, these neuropathologies have not yet been differentiated in children in vivo. In the present study, we leveraged recent advances in diffusion imaging modeling, tractography, and tractometry to better understand the neuropathology underlying working memory problems in concussion. Studying a sample of 16 concussed and 46 healthy youths, we used novel tractography methods to isolate 11 working memory tracks. Along these tracks, we measured fractional anisotropy, diffusivities, track volume, apparent fiber density, and free water fraction. In three tracks connecting the right thalamus to the right dorsolateral prefrontal cortex (DLPFC), we found microstructural differences suggestive of myelin alterations. In another track connecting the left anterior-cingulate cortex with the left DLPFC, we found microstructural changes suggestive of axonal loss. Structural differences and tractography reconstructions were reproduced using test-retest analyses. White matter structure in the three thalamo-prefrontal tracks, but not the cingulo-prefrontal track, appeared to play a key role in working memory function. The present results improve understanding of working memory neuropathology in concussions, which constitutes an important step toward developing neuropathologically informed biomarkers of concussion in children.


Asunto(s)
Conmoción Encefálica/patología , Conmoción Encefálica/psicología , Memoria a Corto Plazo , Corteza Prefrontal/patología , Tálamo/patología , Sustancia Blanca/patología , Adolescente , Conmoción Encefálica/diagnóstico por imagen , Niño , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Corteza Prefrontal/diagnóstico por imagen , Tálamo/diagnóstico por imagen
2.
Neurosci Lett ; 419(2): 113-8, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17485168

RESUMEN

Anatomical studies in animals have described multiple striatal circuits and suggested that sub-components of the striatum, although functionally related, project to distinct cortical areas. To date, anatomical investigations in humans have been limited by methodological constraints such that most of our knowledge of fronto-striatal networks relies on nonhuman primate studies. To better identify the fronto-striatal pathways in the human brain, we used Diffusion Tensor Imaging (DTI) tractography to reconstruct neural connections between the frontal cortex and the caudate nucleus and putamen in vivo. We demonstrate that the human caudate nucleus is interconnected with the prefrontal cortex, inferior and middle temporal gyrus, frontal eye fields, cerebellum and thalamus; the putamen is interconnected with the prefrontal cortex, primary motor area, primary somatosensory cortex, supplementary motor area, premotor area, cerebellum and thalamus. A connectivity-based seed classification analysis identified connections between the dorsolateral prefrontal areas (DLPFC) and the dorsal-posterior caudate nucleus and between the ventrolateral prefrontal areas (VLPFC) and the ventral-anterior caudate nucleus. For the putamen, connections exist between the supplementary motor area (SMA) and dorsal-posterior putamen while the premotor area projects to medial putamen, and the primary motor area to the lateral putamen. Identifying the anatomical organization of the fronto-striatal network has important implications for understanding basal ganglia function and associated disease processes.


Asunto(s)
Mapeo Encefálico/métodos , Cuerpo Estriado/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Vías Eferentes/anatomía & histología , Lóbulo Frontal/anatomía & histología , Adulto , Anatomía Artística , Mapeo Encefálico/instrumentación , Núcleo Caudado/anatomía & histología , Núcleo Caudado/fisiología , Cerebelo/anatomía & histología , Cerebelo/fisiología , Cuerpo Estriado/fisiología , Imagen de Difusión por Resonancia Magnética/instrumentación , Vías Eferentes/fisiología , Lóbulo Frontal/fisiología , Humanos , Ilustración Médica , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Putamen/anatomía & histología , Putamen/fisiología , Tálamo/anatomía & histología , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA