Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 208: 108531, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38513516

RESUMEN

The occurrence of microplastics (MPs) and nanoplastics (NPs) in soils potentially induce morphological, physiological, and biochemical alterations in plants. The present study investigated the effects of MPs/NPs on lettuce (Lactuca sativa L. var. capitata) plants by focusing on (i) four different particle sizes of polyethylene micro- and nanoplastics, at (ii) four concentrations. Photosynthetic activity, morphological changes in plants, and metabolomic shifts in roots and leaves were investigated. Our findings revealed that particle size plays a pivotal role in influencing various growth traits of lettuce (biomass, color segmentation, greening index, leaf area, and photosynthetic activity), physiological parameters (including maximum quantum yield - Fv/Fmmax, or quantum yield in the steady-state Fv/FmLss, NPQLss, RfdLss, FtLss, FqLss), and metabolomic signatures. Smaller plastic sizes demonstrated a dose-dependent impact on aboveground plant structures, resulting in an overall elicitation of biosynthetic processes. Conversely, larger plastic size had a major impact on root metabolomics, leading to a negative modulation of biosynthetic processes. Specifically, the biosynthesis of secondary metabolites, phytohormone crosstalk, and the metabolism of lipids and fatty acids were among the most affected processes. In addition, nitrogen-containing compounds accumulated following plastic treatments. Our results highlighted a tight correlation between the qPCR analysis of genes associated with the soil nitrogen cycle (such as NifH, NirK, and NosZ), available nitrogen pools in soil (including NO3- and NH4), N-containing metabolites and morpho-physiological parameters of lettuce plants subjected to MPs/NPs. These findings underscore the intricate relationship between specific plastic contaminations, nitrogen dynamics, and plant performance.


Asunto(s)
Lactuca , Microplásticos , Microplásticos/análisis , Microplásticos/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Suelo/química
2.
Physiol Plant ; 174(2): e13679, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35362106

RESUMEN

Seed inoculation with beneficial microorganisms has gained importance as it has been proven to show biostimulant activity in plants, especially in terms of abiotic/biotic stress tolerance and plant growth promotion, representing a sustainable way to ensure yield stability under low input sustainable agriculture. Nevertheless, limited knowledge is available concerning the molecular and physiological processes underlying the root-inoculant symbiosis or plant response at the root system level. Our work aimed to integrate the interrelationship between agronomic traits, rhizosphere microbial population and metabolic processes in roots, following seed treatment with either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria (PGPR). To this aim, maize was grown under open field conditions with either optimal or reduced nitrogen availability. Both seed treatments increased nitrogen uptake efficiency under reduced nitrogen supply revealed some microbial community changes among treatments at root microbiome level and limited yield increases, while significant changes could be observed at metabolome level. Amino acid, lipid, flavone, lignan, and phenylpropanoid concentrations were mostly modulated. Integrative analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong correlation between the metagenomics and the untargeted metabolomics datasets, suggesting a coordinate modulation of root physiological traits.


Asunto(s)
Micorrizas , Rizosfera , Bacterias/metabolismo , Metaboloma , Micorrizas/fisiología , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Semillas/metabolismo , Microbiología del Suelo , Zea mays/metabolismo
3.
Bioresour Technol ; 351: 126934, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35248711

RESUMEN

Bioplastics may be collected in the bio-waste treatment, which is often composed of anaerobic digestion and subsequent aerobic composting of the digestates. The aim of this study was to evaluate the degradability of polylactic acid (PLA) and starch-based bioplastics (SBB) spoons under industrial conditions. Biomethane potential (BMP) was measured and biogas production was monitored, while the quality of composts was assessed by phytotoxicity and ecotoxicity tests. The bioplastics disintegration resulted in 65.1 ± 4.6 % for PLA and ≤ 65.0 ± 7.4 % for SBB, not achieving the target set by UNI EN 13,432 standard, and several residues were found in compost. Phytotoxicity tests on seeds reported the lowest Germination Index for PLA elutriate, whereas a potential negative effect of SBB on soil fauna was detected. Further investigation is needed to assess the fate of these ever-growing materials under industrial conditions, and also evaluate the effects of residues in compost.


Asunto(s)
Compostaje , Anaerobiosis , Poliésteres , Suelo , Almidón
4.
Biodegradation ; 29(2): 187-209, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29492776

RESUMEN

Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.


Asunto(s)
Contaminación Ambiental/análisis , Consorcios Microbianos , Petróleo/microbiología , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Biodiversidad , Análisis por Conglomerados , Genes Bacterianos , Consorcios Microbianos/genética , Análisis Multivariante , Contaminación por Petróleo/análisis , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA