Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 101(3): 469-478, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34453485

RESUMEN

Plant extracts and their bioactive compounds are considered as the promising options for green synthesis of nanoparticles instead expensive and hazardous materials. Here, Solanum xanthocarpum fruit was used for synthesis of silver nanoparticles (AgNP). The synthesized AgNPs were characterized by using chromatographic and spectroscopic analytical methods. AgNPs were confirmed by UV-visible absorbance at 420-470 nm. TEM analysis showed AgNP with 22.45 nm average size. X-ray diffraction studies revealed the crystalline and face central cubic nature of AgNPs. FTIR analysis revealed functional group present over AgNPs. The aminodiphenyl acetic acid, clomipramine, and fonisopril from fruit extracts were found to be major capping agents on AgNPs as a result of analysis by HRLC-MS. All clinical isolates showed resistance for ampicilline, amoxyclav, niladixic acid, and sulphafurazole, suggesting multidrug resistance. The results showed that all isolates were sensitive to AgNPs synthesized fruit extracts. On the contrary, all isolates were resistant to whole S. xanthocarpum fruit extracts alone. The antimicrobial activity of AgNP was explored against multidrug-resistant (MDR) Gram-negative clinical isolates including Escherichia coli, Shigella spp., Aeronomonas spp. and Pseudomonas spp. MIC values ranged between 1.25 mg/ml and 2.5 mg/ml at 8 McFarland's standards. Minimum bactericidal concentration was found to be in between 2.5 mg/ml to 5 mg/ml. Nanoparticles synthesized from fruit extract of S. xanthocarpum containing aminodiphenyl acetic acid, clomipramine, and fonisopril metabolites exhibit promising antimicrobial activity against MDR Gram-negative clinical isolates.


Asunto(s)
Nanopartículas del Metal , Solanum , Antibacterianos/química , Solanum/química , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Clomipramina , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
2.
Oxid Med Cell Longev ; 2022: 9671594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795854

RESUMEN

In this study, we report the green synthesis of silver nanoparticles (AgNPs) using the aqueous leaf extract of Tridax procumbens (TNP), which acts as the source of the reducing and capping agent. The distinctive absorption at 370 nm suggested synthesis of TNPs, which was confirmed by TEM, with a size in the range of 11.1 nm to 45.4 nm and a spherical shape, having a face-centered cubic structure, analyzed by XRD, and a Zeta potential of -20.7 mV, which indicated a moderate stability of TNP. The FTIR analysis revealed the presence of amines and hydroxyl groups with fluoro compounds over the TNPs. The HRLC-MS analysis of TNPs suggested the presence of a major capping agent such as fosinopril and reducing agents such as peptides (Gln Gly Ala, Ser Pro Asn, and Leu Met), terpenoids (lupanyl acid, tiamulin), polyphenol (peucenin), and alkaloids (8',10'-dihydroxydihydroergotamine, carteolol). The synthesized silver nanoparticles exhibited antimicrobial activity against multidrug-resistant (MDR) clinical isolates (Escherichia coli, Shigella spp., Aeromonas spp., Pseudomonas aeruginosa, and Candida tropicalis) and had anticancer activity against A459 (IC50 42.70 µg/ml). The extraction of partially purified aqueous leaf extracts by silica gel column chromatography followed by HPLC to synthesize silver nanoparticles (TNP11) and analyzed by HRLC-MS suggested that dipeptides were involved in the reduction of Ag+ to Ag0. Overall, the results showed that the green silver nanoparticles of T. procumbens could be safe, as they are endowed with potential antimicrobial activity against MDR clinical isolates and human lung carcinoma cells.


Asunto(s)
Antiinfecciosos , Asteraceae , Nanopartículas del Metal , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Escherichia coli , Humanos , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA