Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Chem ; 12: 1291230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476652

RESUMEN

Background: Ulcerative colitis is a chronic immune-mediated inflammatory bowel disease that involves inflammation and ulcers of the colon and rectum. To date, no definite cure for this disease is available. Objective: The objective of the current study was to assess the effect of Calliandra haematocephala on inflammatory mediators and oxidative stress markers for the exploration of its anti-ulcerative colitis activity in rat models of acetic acid-induced ulcerative colitis. Methods: Methanolic and n-hexane extracts of areal parts of the plant were prepared by cold extraction method. Phytochemical analysis of both extracts was performed by qualitative analysis, quantitative methods, and high-performance liquid chromatography (HPLC). Prednisone at 2 mg/kg dose and plant extracts at 250, 500, and 750 mg/kg doses were given to Wistar rats for 11 days, which were given acetic acid on 8th day through the trans-rectal route for the induction of ulcerative colitis. A comparison of treatment groups was done with a normal control group and a colitis control group. To evaluate the anti-ulcerative colitis activity of Calliandra haematocephala, different parameters such as colon macroscopic damage, ulcer index, oxidative stress markers, histopathological examination, and mRNA expression of pro and anti-inflammatory mediators were evaluated. mRNA expression analysis was carried out by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Results: The phytochemical evaluation revealed polyphenols, flavonoids, tannins, alkaloids, and sterols in both extracts of the plant. Results of the present study exhibited that both extracts attenuated the large bowel inflammation and prevented colon ulceration at all tested doses. Macroscopic damage and ulcer scoreswere significantly decreased by both extracts. Malondialdehyde (MDA) levels and nitrite/nitrate concentrations in colon tissues were returned to normal levels while superoxide dismutase (SOD) activity was significantly improved by all doses. Histopathological examination exhibited that both extracts prevented the inflammatory changes, cellular infiltration, and colon thickening. Gene expression analysis by RT-qPCR revealed the downregulation of pro-inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) whereas the anti-inflammatory cytokines including Interleukin-4 (IL-4) and Interleukin-10 (IL-10) were found to be upregulated in treated rats. Conclusion: It was concluded based on study outcomes that methanolic and n-hexane extracts of Calliandra haematocephala exhibited anti-ulcerative colitis activity through modulation of antioxidant defense mechanisms and the immune system. In this context, C. haematocephala can be considered as a potential therapeutic approach for cure of ulcerative colitis after bioassay-directed isolation of bioactive phytochemicals and clinical evaluation.

2.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287491

RESUMEN

Alzheimer's disease (AD) ranks as the most prevalent neurodegenerative disorder with dementia and it accounts for more than 70% of all cases. Despite extensive reporting on the experimental investigation of Datura innoxia (DI) and its phytochemical components in the treatment of AD, the urgent need for elucidation of the principle of multi-mechanism and multi-level treatment of AD remains. In this research, molecular docking and network pharmacology were used to evaluate active compounds and molecular targets of DI for the treatment of AD. The phytochemical compounds of DI were obtained from the Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) as well as the Traditional Chinese Medicine System Pharmacology (TCMSP) databases. The screening includes the 28 most abundant components of DI and the Swiss Target Prediction database was used to predict targets of these compounds. The GeneCards database was used to collect AD-related genes. Both DI and AD targets were imported into a Venn diagram, and the 28 overlapped genes were identified as potential DI anti-AD targets. The results showed that Dinoxin B, Meteloidine, Scopoline, and Tropic acid had no effect on AD-related genes. Furthermore, the GO enrichment analysis indicates that DI influences molecular functions and biological processes such as learning or memory and modulation of chemical synaptic transmission as well as the membrane raft and membrane microdomain. The KEGG pathway analysis revealed that the key pathways implicated in DI's anti-AD actions include serotonergic synapse, IL-17 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. Based on the STRING and Cytoscape network-analysis platforms, the top ten anti-AD core targets include APP, CASP3, IL6, BACE1, IL1B, ACE, PSEN1, GAPDH, GSK3B and ACHE. The molecular docking and molecular dynamic simulation of the top two molecules against the top three target proteins confirmed the strong binding affinity and stability at the docked site. Overall, our findings pave the path for further research into the development and optimization of potential anti-AD agents from DI.Communicated by Ramaswamy H. Sarma.

3.
Saudi Pharm J ; 31(11): 101802, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37822694

RESUMEN

Inflammation is a nonspecific immune response against injury caused by a harmful agent that strives to restore tissue function and homeostasis. Dodonaea angustifolia L.f. (Sapindaceae) is a medium-sized shrub used to treat a variety of diseases in traditional medicine. In the current study, integrated network-pharmacology and molecular docking approaches were used to identify the active constituents, their possible targets, signaling pathways, and anti-inflammatory effects of flavonoids from D.angustifolia. D. angustifolia active ingredients were acquired from the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT), and Traditional Chinese Medicine System Pharmacology (TCMSP) databases. The screening included the ten most prevalent D. angustifolia components, and the SwissTargetPrediction database was utilized to anticipate the targets of these compounds. Anti-inflammatory genes were found using the GeneCards database. The 175 overlapping genes were discovered as prospective D. angustifolia anti-inflammatory targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the overlapped targets were closely related to the major pathogenic processes linked to inflammation, such as response to organonitrogen compound, protein kinase activity, phosphotransferase activity, pI3k-Akt signaling pathway, metabolic pathways, and chemical carcinogenesis. Compound-target-pathway, and protein-protein interaction networks revealed 6-Methoxykaempferol and 5-Hydroxy-7,8 dimethoxyflavone as key compounds, and AKT1, VEGFA, and EGFR as key targets. Furthermore, molecular docking followed by molecular dynamic (MD) simulation of D. angustifolia active ingredients with core proteins fully complemented the binding affinity of these compounds and indicated stable complexes at the docked site. These findings reveal D. angustifolia 's multi-target, multi-compound, and multi-pathway strategies against inflammation. Our study paved the way for further research into the mechanism for developing D. angustifolia -based natural products as alternative therapies for inflammation.

4.
Comput Biol Med ; 161: 107059, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244150

RESUMEN

Liver cancer is a malignant tumor that grows on the surface or inside the liver. The leading cause is a viral infection with hepatitis B or C virus. Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer. A list of studies evidences the therapeutic efficacy of Bacopa monnieri against liver cancer, but the precise molecular mechanism is yet to be discovered. This study combines data mining, network pharmacology, and molecular docking analysis to potentially revolutionize liver cancer treatment by identifying effective phytochemicals. Initially, the information on active constituents of B. monnieri and target genes of both liver cancer and B. monnieri were retrieved from literature as well as from publicly available databases. Based on the matching results between B. monnieri potential targets and liver cancer targets, the protein-protein interaction (PPI) network was constructed using the STRING database and imported into Cytoscape for screening of hub genes based on their degree of connectivity. Later, the interactions network between compounds and overlapping genes was constructed using Cytoscape software to analyze the network pharmacological prospective effects of B. monnieri on liver cancer. Gene Ontology (GO) and KEGG pathway analysis of hub genes revealed that these genes are involved in the cancer-related pathway. Lastly, the expression level of core targets was analyzed using microarray data (GSE39791, GSE76427, GSE22058, GSE87630, and GSE112790). Further, the GEPIA server and PyRx software were used for survival and molecular docking analysis, respectively. In summary, we proposed that quercetin, luteolin, apigenin, catechin, epicatechin, stigmasterol, beta-sitosterol, celastrol, and betulic acid inhibit tumor growth by affecting tumor protein 53 (TP53), interleukin 6 (IL6), RAC-alpha serine/threonine protein kinases 1 (AKT1), caspase-3 (CASP3), tumor necrosis factor (TNF), jun proto-oncogene (JUN), heat shot protein 90 AA1 (HSP90AA1), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), and SRC proto-oncogene (SRC). Through, microarray data analysis, the expression level of JUN and IL6 were found to be upregulated while the expression level of HSP90AA1 was found to be downregulated. Kaplan-Meier survival analysis indicated that HSP90AA1 and JUN are promising candidate genes that can serve as diagnostic and prognostic biomarkers for liver cancer. Moreover, the molecular docking and molecular dynamic simulation of 60ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. Calculation of binding free energies using MMPBSA and MMGBSA validated the strong binding affinity between the compound and binding pockets of HSP90AA1 and JUN. Despite that, in vivo and in vitro studies are mandatory to unveil pharmacokinetics and biosafety profiles to completely track the candidature status of B. monnieri in liver cancer.


Asunto(s)
Bacopa , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Factor A de Crecimiento Endotelial Vascular , Simulación del Acoplamiento Molecular , Interleucina-6 , Farmacología en Red , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Minería de Datos
5.
J Biomol Struct Dyn ; 41(22): 12768-12776, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36644848

RESUMEN

Clostridioides difficile is a gram-positive bacterium which is associated with different gastrointestinal related infections, and the numbers of cases related to it are continuously increasing in the past few years. Owing to high prevalence and development of resistance towards available antibiotics, it is required to develop new therapeutics to combat C. difficile infection. The current study was aimed to identify novel phytochemicals that could bind and inhibits the TcdB, an exotoxin which is required for the pathogenesis of bacteria, and hence can be considered as the future drug candidates against C. difficile. ∼2500 therapeutically important phyto-compounds were docked against the active sites of TcdB protein by using AutoDock-Vina software. The interactions between the ligands and the binding site of the top five docked complexes, based on the docking scores, were further elucidated by Molecular Dynamics Simulations of 500 ns, Molecular Mechanics Energies combined with the Poisson-Boltzmann and Surface Area (MMPBSA) or Generalized Born and Surface Area (MMGBSA), and WaterSwap Analysis. Findings of molecular docking suggested that natural compounds A183, A704, A1528, A2083, and A2129 with distinct chemical scaffolds are best docked in the binding site of TcdB and their bonding remained stable throughout the simulation studies of 500 ns. Compounds A2129 and A704 can be considered as prospective drug candidates against Clostridioides difficile, however, further wet lab experiments are needed to confirm our study.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Factores de Virulencia , Simulación del Acoplamiento Molecular , Clostridioides , Fitoquímicos/farmacología
6.
Foods ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36496613

RESUMEN

This study was aimed to improve nutritional, functional and consumer safety aspects of cabbage powder (CP). White cabbage (Brassica oleracea var. capitata f. alba) was dehydrated to CP following microwave heating, blanching, alkali or acid washing treatments. The results for nutrients and mineral composition of raw and processed CP elucidated raw CP to exhibit significantly (p < 0.05) higher amounts of protein (12.2%), dietary fiber (25.2%), Na (52 mg/100 g), Ca (355 mg/100 g), K (286 mg/100 g), Fe (14 mg/100 g) and Zn (32 mg/100 g). Among different processing techniques, microwave treatment resulted in a higher rate of reduction for alkaloids, oxalates, tannins and phytates contents, i.e., 77%, 85%, 85%, and 86%, respectively. Likewise, microwave treatment was found more effective in reducing residual levels of neonicotinoids, pyrethroids, organophosphates including imidacloprid, cypermethrin, bifenthrin, chlorpyrifos and deltamethrin in cabbage in the range of 0.98−0.12 ppm, 1.22−0.23 ppm, 1.03−0.15 ppm, 1.97−0.43 ppm, and 2.12−0.36 ppm, respectively. CP supplementation at the rate of 5% in unleavened flatbreads was observed to maintain textural and sensory attributes of the product. The results suggest microwave heating as a cost-effective technique to reduce toxicants load in cabbage powder. Further, ~5% supplementation of CP in wheat flour may also improve nutritional and functional properties of the baked goods.

7.
Pharmaceuticals (Basel) ; 15(5)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35631398

RESUMEN

Natural products have played a critical role in medicine due to their ability to bind and modulate cellular targets involved in disease. Medicinal plants hold a variety of bioactive scaffolds for the treatment of multiple disorders. The less adverse effects, affordability, and easy accessibility highlight their potential in traditional remedies. Identifying pharmacological targets from active ingredients of medicinal plants has become a hot topic for biomedical research to generate innovative therapies. By developing an unprecedented opportunity for the systematic investigation of traditional medicines, network pharmacology is evolving as a systematic paradigm and becoming a frontier research field of drug discovery and development. The advancement of network pharmacology has opened up new avenues for understanding the complex bioactive components found in various medicinal plants. This study is attributed to a comprehensive summary of network pharmacology based on current research, highlighting various active ingredients, related techniques/tools/databases, and drug discovery and development applications. Moreover, this study would serve as a protocol for discovering novel compounds to explore the full range of biological potential of traditionally used plants. We have attempted to cover this vast topic in the review form. We hope it will serve as a significant pioneer for researchers working with medicinal plants by employing network pharmacology approaches.

8.
J Ethnopharmacol ; 295: 115314, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35490899

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Citrullus lanatus (Thunb.) belongs to the ground family, Cucurbitaceae, known for edible fruit. Besides nutritional benefits, the traditional herbal practitioners in Pakistan and India used their seeds to treat gastrointestinal, respiratory, and urinary disorders. In Northern Sudan, its seeds are often used as a laxative. Its root is laxative and emetic at a high dose. Its seeds are also used to treat bedwetting and urinary tract obstruction. AIM OF THE STUDY: This study aimed to elucidate the multi-target mechanisms of Citrullus lanatus seeds to treat asthma and diarrhea. The pharmacological experiments were designed and conducted, along with the pharmacology network and molecular docking predictions, to verify the seeds biopotency for antispasmodic and bronchodilator properties. METHODS: LC ESI-MS/MS were performed to identify the potentially active compounds in hydroethanolic extract of Citrullus lanatus seeds, then to quantify them by HPLC. The quantified bioactive compounds of Citrullus lanatus, i.e., stigmasterol, quinic acid, malic acid, epicatechin, caffeic acid, rutin, p-coumaric acid, quercetin, ferulic acid, scopoletin, apigenin, and kaempferol were subjected to in silico studies for molecular docking. The hydroethanolic extract of Citrullus lanatus seeds was examined on isolated rabbit tissue, i.e., jejunum, trachea, and urinary bladder. The antiperistalsis, antidiarrheal and antisecretory studies were also performed in animal models. RESULTS: In silico studies revealed that bioactive compounds of C. lanatus seeds interfere with asthma and diarrhea-associated target genes, which are a member of calcium mediate signaling, regulation of cytosolic calcium concentration, smooth muscle contraction, and inflammatory responses. It was also found that rutin, quercetin, kaempferol, and scopoletin were stronger binding to voltage-gated calcium channels, calcium/calmodulin-dependent protein kinase, myosin light chain kinase, and phosphoinositide phospholipase C, thus, exerting calcium channel blocker activity. The hydroethanolic extract of C. lanatus seeds exerted a concentration-dependent relaxant response for the spasmolytic response on isolated jejunum and trachea preparations and caused relaxation of spastic contraction of K+ (80 mM). Furthermore, it caused a non-parallel rightward shift with suppression of calcium concentration-response curves. In animal models, the Cl.EtOH showed antiperistalsis, antidiarrheal and antisecretory response. CONCLUSION: Thus, we confirm Citrullus lanatus seeds have some medicinal effects by regulating the contractile response through target proteins of calcium mediates signaling and can be a promising component in the medical treatment for asthma and diarrhea.


Asunto(s)
Asma , Citrullus , Animales , Antidiarreicos/química , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Asma/tratamiento farmacológico , Calcio , Citrullus/química , Diarrea/tratamiento farmacológico , Etanol/uso terapéutico , Quempferoles/uso terapéutico , Laxativos/uso terapéutico , Simulación del Acoplamiento Molecular , Pakistán , Parasimpatolíticos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Quercetina/uso terapéutico , Conejos , Rutina , Escopoletina , Semillas/química , Espectrometría de Masas en Tándem
9.
J Sci Food Agric ; 102(14): 6632-6642, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35603546

RESUMEN

BACKGROUND: Sugarcane provides many secondary metabolites for the pharmacological and cosmetic industries. Secondary metabolites, such as phenolic compounds, flavonoids, and anthocyanins, have been studied, but few reports focus on the identification of alkaloid and non-alkaloid phytocompounds in sugarcane. RESULTS: In this study, we identified 40 compounds in total from the rinds of cultivated sugarcane varieties (including eight alkaloids, 24 non-alkaloids, and eight others) by using the liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. Among these compounds, 31 were novel and are reported for the first time in sugarcane. Some alkaloids such as 3-indoleacrylic acid, N,N-dimethyl-5-methoxytryptamine, tryptamine, 6-hydroxynicotinic acid, and 6-deoxyfagomine are identified the first time in sugarcane rind. Four alkaloids such as trigonelline, piperidine, 3-indoleacrylic acid, and 6-deoxyfagomine are found abundantly in sugarcane rind and these compounds have promising pharmaceutical value. Some phytocompounds such as choline and acetylcholine (non-alkaloid compounds) were most common in the rind of ROC22 and Yuetang93/159 (YT93/159). Hierarchical cluster analysis and principal component analysis revealed that the ROC22, Taitang172 (F172), and Yuetang71/210 (YT71/210) varieties were quite similar in alkaloid composition when compared with other sugarcane varieties. We have also characterized the biosynthesis pathway of sugarcane alkaloids. The rind of F172, ROC22, and YT71/210 showed the highest total alkaloid content, whereas the rind of ROC16 revealed a minimum level. Interestingly, the rind extract from YT71/210 and F172 showed maximum antioxidant activity, followed by ROC22. CONCLUSION: Our results showed the diversity of alkaloid and non-alkaloid compounds in the rind of six cultivated sugarcanes and highlighted the promising phytocompounds that can be extracted, isolated, and utilized by the pharmacological industry. © 2022 Society of Chemical Industry.


Asunto(s)
Saccharum , Acetilcolina , Antocianinas , Antioxidantes/química , Colina , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Flavonoides , Metabolómica/métodos , Metoxidimetiltriptaminas , Piperidinas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Saccharum/química , Espectrometría de Masas en Tándem/métodos
10.
Biomed Res Int ; 2022: 2277417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386306

RESUMEN

The study was an extension of our earlier work on antiinflammatory and anticancer properties of G. asiatica fruit. We aimed to develop a bioassay guided multistep purification technique for producing bioactive fractions of G. asiatica crude extracts. Dried fruit powder was sequentially fractionated with 100% dichloromethane, 100% methanol (MeOH), and 50% MeOH. Active extracts were subjected to liquid-liquid partitioning followed by subfractionation using RP-HPLC. Antioxidant, antiinflammatory, and anticancer activities of the fruit extracts, and their potent fractions were evaluated in vitro, while identification of compounds from the bioactive fractions was performed by ESI-MS/MS analysis. The amount of the identified compounds present was confirmed using external standards adopting a simple, accurate, and rapid analytical HPLC method. The results showed that 100% and 50% MeOH extracts possessed bioactivity; one of which (the 50% MeOH extract) displayed potent activity in all in vitro bioassays. MeOH extract (50%) derived fraction C and hydroalcoholic fraction 5 (GAHAF5) were observed to possess higher antioxidant, antiinflammatory, and in vitro anticancer activity. IC50 of GAHAF5 against MCF-7, HEp-2, and NCI-H522 cancer cells was recorded as 26.2, 51.4, and 63 µg/mL, respectively. ESI-MS/MS and HPLC analysis identified catechin, chlorogenic acid, caffeic acid, and morin as potential bioactive compounds in the GAHAF5 fraction with concentrations of 1230, 491, 957, and 130 µg/g, respectively. The findings indicated that G. asiatica bioactive fractions possessed antiinflammatory activity in vitro and were cytotoxic against breast cancer, lung cancer, and laryngeal cancer cell lines.


Asunto(s)
Antioxidantes , Grewia , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Bioensayo , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem
11.
Pak J Pharm Sci ; 35(1(Supplementary)): 203-208, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35228178

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) produce resistance to various classes of antibiotics and left limited options for treatment. This study was designed to determine antibacterial activity of AgNPs against CRAB. Total 100 A. baumannii were collected from a tertiary care hospital, Lahore. Isolates were subcultured on blood and MacConkey agar. Preliminary identification was carried out by morphological and biochemical tests. Antibiogram was done by Kirby-Bauer disc diffusion method. Antibacterial activity of AgNPs was performed by agar well diffusion method, while minimum inhibitory concentration and minimum bactericidal concentration were determined by micro broth dilution assay. Of 100 A. baumannii, 24 were confirmed as carbapenem-resistant. These isolates were mainly recovered from tracheal secretion (8; 33%), CSF (5; 20.8%), and urine (4; 16.8%). Antibacterial activity of AgNPs revealed a maximum zone of inhibition, 22mm at 50mg/mL and 18mm at 40mg/mL by agar well diffusion method. MIC of AgNPs determined that 14 CRAB were inhibited at 12.5mg/mL and 7 at 25mg/mL. However, MBC revealed that 13 CRAB were killed at 25mg/mL and 7 at 50mg/mL. This study concluded that most of the CRAB were inhibited and killed at 12.5mg/mL and 25mg/mL, respectively. AgNPs can be used as an alternative therapeutic agent followed by their pharmacokinetics and pharmacognosy.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Plata/química
12.
Int J Biol Macromol ; 205: 772-781, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35331794

RESUMEN

According to global estimation, 5.7 billion hectares of agricultural land contain limited phosphorus (P) availability leading to insufficient plant growth and productivity. Internal phosphate transporters play an essential role in mediating P mobilization and uptake from the soil. White lupin (Lupinus albus) is a cluster root (CR) forming crop with great potential to survive under P limited soil. However, it is imperative to identify and characterize the phosphate transporter (PHT) gene family in plants to validate their involvement in solving P deficiency problems. The recent availability of white lupin high-quality genome allowed us an exhaustive searches in the whole genome and identified five phosphates transporters subfamilies, including 35 putative genes that are unevenly distributed on 16 chromosomes. The LaPHT1 subfamily contained eight genes, LaPHT2 subfamily have three, LaPHT3 subfamily have eight, LaPHT4 subfamily have nine, and LaPHO subfamily has seven. Gene structure and duplication were also examined in detail. Syntenic analysis revealed that white lupin PHT family members had maximum the collinear relationship with those in L. angustifolius followed by Phaseolus vulgaris but showed the least collinear relationship with those in Arabidopsis. Gene ontology (GO) analysis revealed that the in white lupin PHT genes were enriched in functions regulated P uptake, transport, and recycling mechanisms. RT-qPCR was performed to evaluate the transcript levels of LaPHT genes in different parts of CR under P deficient hydroponic culture. Our study would provide better understanding the genetic evolution and expression phosphate of phosphate transporters in L. albus CR under P deficiency. It will also be helpful for further functional-based studies to solve P deficiency-related issues and mitigate P stress responses.


Asunto(s)
Lupinus , Regulación de la Expresión Génica de las Plantas , Lupinus/genética , Lupinus/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas
13.
Foods ; 11(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159528

RESUMEN

Syzygium cumini, locally known as Jamun in Asia, is a fruit-bearing crop belonging to the Myrtaceae family. This study aims to summarize the most recent literature related to botany, traditional applications, phytochemical ingredients, pharmacological activities, nutrition, and potential food applications of S. cumini. Traditionally, S. cumini has been utilized to combat diabetes and dysentery, and it is given to females with a history of abortions. Anatomical parts of S. cumini exhibit therapeutic potentials including antioxidant, anti-inflammatory, analgesic, antipyretic, antimalarial, anticancer, and antidiabetic activities attributed to the presence of various primary and secondary metabolites such as carbohydrates, proteins, amino acids, alkaloids, flavonoids (i.e., quercetin, myricetin, kaempferol), phenolic acids (gallic acid, caffeic acid, ellagic acid) and anthocyanins (delphinidin-3,5-O-diglucoside, petunidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside). Different fruit parts of S. cumini have been employed to enhance the nutritional and overall quality of jams, jellies, wines, and fermented products. Today, S. cumini is also used in edible films. So, we believe that S. cumini's anatomical parts, extracts, and isolated compounds can be used in the food industry with applications in food packaging and as food additives. Future research should focus on the isolation and purification of compounds from S. cumini to treat various disorders. More importantly, clinical trials are required to develop low-cost medications with a low therapeutic index.

14.
J Ethnopharmacol ; 287: 114919, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995693

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Syzygium cumini (L.) Skeels has been extensively used in the ancient medical system of Pakistan, India, Bangladesh, and Sri Lanka to combat diabetes, inflammation, and renal disorders. These health-promoting aspects of S. cumini are related to bioactive metabolites such as phenolic acids, anthocyanins, tannins, and flavonoids. AIM OF THE STUDY: Earlier to this study, we have reported S. cumini extracts as potential sources of bioactive compounds bearing antioxidant and anti-inflammatory properties. However, prior further suggesting S. cumini fruit extracts for consumption against inflammatory disorders, it was mandatory to validate the claim and explore toxicity of the extracts. This study aims to determine the in vivo anti-nociceptive, anti-inflammatory, acute, and subacute toxicity properties of S. cumini crude extracts, followed by identifying and quantifying bioactive metabolites. MATERIAL AND METHODS: In the present study, the anti-nociceptive and anti-inflammatory potential of S. cumini sequential crude extracts were evaluated using formalin and glutamate-induced paw licking method in mice. The acute and sub-acute toxicity assessment of active extract was performed by oral administration in rats. An acute toxicity trial was performed with two different doses, i.e., 2000 mg/kg and 3000 mg/kg for consecutive 14 days, whereas a sub-acute toxicity study was conducted at doses of 750 mg/kg and 1500 mg/kg for the next 28 days. Identification of bioactive compounds was performed using HPLC, and at the end, in silico docking calculations of identified compounds were performed. RESULTS: The 100% methanolic extract (SCME) protected the mice from painful stimulation of formalin and glutamate in a dose-dependent manner with the maximum effect of 49% and 67% at 200 mg/kg, respectively, followed by moderate and non-influential effects of 50% methanolic extract and dichloromethane (DCM) extracts when compared to control, i.e., normal saline. The results of acute toxicity recorded LD50 of SCME over 3000 mg/kg, and no antagonistic effects were recorded during the subacute study when SCME dispensed at the rate of 750 mg/kg and 1500 mg/kg. SCME was found to induce no adverse effects to kidney, heart, liver, spleen, and paired lungs examined by hematological, serum biochemical, histological analysis. HPLC analysis of S. cumini 100% methanolic extracts revealed the presence of delphinidin 3-glucoside, peonidin-3,5-diglucoside, scopoletin, and umbelliferone at the concentration of 127.4, 2104, 31.3, 10.4 µg/g whereas in 50% methanolic extract, the quinic acid, catechin, and myricetin were present at the concentration of 54.9, 63.7, 12.3 µg/g, respectively. Umbelliferone and scopoletin are newly reported compounds in the present study. In silico docking calculations of these compounds indicated the potential of anti-nociceptive and anti-inflammatory activities. CONCLUSIONS: These findings validate that S. cumini fruit extracts are a rich source of bioactive compounds that needs to be considered to enhance biological activities with lesser side effects.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Syzygium/química , Analgésicos/administración & dosificación , Analgésicos/aislamiento & purificación , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales/administración & dosificación , Extractos Vegetales/toxicidad , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subaguda
15.
Braz. J. Pharm. Sci. (Online) ; 58: e18628, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1364417

RESUMEN

Abstract Degenerative diseases diabetes and oxidative stress constitute a major health concern worldwide. Medicinal plants are expected to provide effective and affordable remedies. The present research explored antidiabetic and antioxidant potential of extracts of Carissa opaca roots. Methanolic extract (ME) was prepared through maceration. Its fractions were obtained, sequentially, in hexane, chloroform, ethyl acetate and n-butanol. An aqueous decoction (AD) of the finely ground roots was obtained by boiling in distilled water. The leftover biomass with methanol was boiled in water to obtain biomass aqueous decoction (BAD). The extracts and fractions showed considerable porcine pancreatic α-amylase inhibitory activity with IC50 in the range of 5.38-7.12 mg/mL while acarbose had 0.31 mg/mL. The iron chelating activity in terms of EC50 was 0.2939, 0.3429, 0.1876, and 0.1099 mg/mL for AD, BAD, ME, and EDTA, respectively. The EC50 of beta-carotene bleaching activity for AD, BAD, ME, and standard BHA were 4.10, 4.71, 3.48, and 2.79 mg/mL, respectively. The total phenolic content (TPC) and total flavonoid content (TFC) of AD and BAD were also considerable. In general, ethyl acetate fraction proved to be the most potent. Thus, the C. opaca roots had excellent antioxidant activity while having moderate α-amylase inhibitory potentia


Asunto(s)
Plantas Medicinales/efectos adversos , Extractos Vegetales/análisis , Quelantes del Hierro/análisis , beta Caroteno/análisis , Apocynaceae/clasificación , Enfermedad , Concentración 50 Inhibidora , Hipoglucemiantes/farmacología , Antioxidantes
16.
Nutrients ; 13(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34960117

RESUMEN

Globally grown and organoleptically appreciated Grewia species are known as sources of bioactive compounds that avert the risk of communicable and non-communicable diseases. Therefore, in recent years, the genus Grewia has attracted increasing scientific attention. This is the first systematic review which focusses primarily on the nutritional composition, phytochemical profile, pharmacological properties, and disease preventative role of Grewia species. The literature published from 1975 to 2021 was searched to retrieve relevant articles from databases such as Google Scholar, Scopus, PubMed, and Web of Science. Two independent reviewers carried out the screening, selection of articles, and data extraction. Of 815 references, 56 met our inclusion criteria. G. asiatica and G. optiva were the most frequently studied species. We found 167 chemical compounds from 12 Grewia species, allocated to 21 categories. Flavonoids represented 41.31% of the reported bioactive compounds, followed by protein and amino acids (10.7%), fats and fatty acids (9.58%), ash and minerals (6.58%), and non-flavonoid polyphenols (5.96%). Crude extracts, enriched with bioactive compounds, and isolated compounds from the Grewia species show antioxidant, anticancer, anti-inflammatory, antidiabetic, hepatoprotective/radioprotective, immunomodulatory, and sedative hypnotic potential. Moreover, antimicrobial properties, improvement in learning and memory deficits, and effectiveness against neurodegenerative ailments are also described within the reviewed article. Nowadays, the side effects of some synthetic drugs and therapies, and bottlenecks in the drug development pathway have directed the attention of researchers and pharmaceutical industries towards the development of new products that are safe, cost-effective, and readily available. However, the application of the Grewia species in pharmaceutical industries is still limited.


Asunto(s)
Grewia/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Línea Celular , Etnofarmacología/métodos , Flavonoides/análisis , Flavonoides/farmacología , Frutas/química , Humanos , Hipnóticos y Sedantes/farmacología , Hipoglucemiantes/farmacología , Agentes Inmunomoduladores/farmacología , Ratones , Fitoterapia/métodos , Extractos Vegetales/administración & dosificación , Ratas , Semillas/química
17.
Front Mol Biosci ; 8: 716735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765641

RESUMEN

V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint and is a type I transmembrane protein. VISTA is linked to immunotherapy resistance, and it is a potential immune therapeutic target, especially for triple-negative breast cancer. It expresses at a high concentration in regulatory T cells and myeloid-derived suppressor cells, and its functional blockade is found to delay tumor growth. A useful medicinal plant database for drug designing (MPD3), which is a collection of phytochemicals from diverse plant families, was employed in virtual screening against VISTA to prioritize natural inhibitors against VISTA. Three compounds, Paratocarpin K (PubChem ID: 14187087), 3-(1H-Indol-3-yl)-2-(trimethylazaniumyl)propanoate (PubChem ID: 3861164), and 2-[(5-Benzyl-4-ethyl-1,2,4-triazol-3-yl)sulfanylmethyl]-5-methyl-1,3,4-oxadiazole (PubChem ID: 6494266), having binding energies stronger than -6 kcal/mol were found to have two common hydrogen bond interactions with VISTA active site residues: Arg54 and Arg127. The dynamics of the compound-VISTA complexes were further explored to infer binding stability of the systems. Results revealed that the compound 14187087 and 6494266 systems are highly stable with an average RMSD of 1.31 Å. Further affirmation on the results was achieved by running MM-GBSA on the MD simulation trajectories, which re-ranked 14187087 as the top-binder with a net binding energy value of -33.33 kcal/mol. In conclusion, the present study successfully predicted natural compounds that have the potential to block the function of VISTA and therefore can be utilized further in experimental studies to validate their real anti-VISTA activity.

18.
Comput Biol Med ; 138: 104929, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34655900

RESUMEN

Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy < -11 kcal/mol) and as such two compounds: Strychnogucine A and Galluflavanone were filtered. Both the compounds were found favourably binding to the conserved dimerization interface of HapR. One rare binding conformation of Strychnogucine A was noticed docked at the elongated cavity formed by α1, α4 and α6 (binding energy of -12.5 kcal/mol). The binding stability of both top leads at dimer interface and elongated cavity was further estimated using long run of molecular dynamics simulations, followed by MMGB/PBSA binding free energy calculations to define the dominance of different binding energies. In a nutshell, this study presents computational evidence on antibacterial potential of phytochemicals capable of directly targeting bacterial virulence and highlight their great capacity to be utilized in the future experimental studies to stop the evolution of antibiotic resistance evolution.


Asunto(s)
Vibrio cholerae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Fitoquímicos , Percepción de Quorum , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
19.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641627

RESUMEN

Peganum harmala (P. harmala) belongs to the family Zygophyllaceae, and is utilized in the traditional medicinal systems of Pakistan, China, Morocco, Algeria, and Spain to treat several chronic health disorders. The aim of the present study was to identify the chemical constituents and to evaluate the antioxidant, anti-inflammatory, and toxicity effects of P. harmala extracts both in vitro and in vivo. Sequential crude extracts including 100% dichloromethane, 100% methanol, and 70% aqueous methanol were obtained and their antioxidant and anti-inflammatory effects evaluated both in vitro and in vivo. The anti-inflammatory effect of the extract was investigated using the carrageenan-induced paw edema method in mice, whereas the toxicity of the most active extract was evaluated using an acute and subacute toxicity rat model. In addition, we have used the bioassay-guided approach to obtain potent fractions, using solvent-solvent partitioning and reversed phase high performance liquid chromatography from active crude extracts; identification and quantification of compounds from the active fractions was achieved using electrospray ionization mass spectrometry and high performance liquid chromatography techniques. Results revealed that the 100% methanol extract of P. harmala exhibits significant in vitro antioxidant activity in DPPH assay with an IC50 of 49 µg/mL as compared to the standard quercetin with an IC50 of 25.4 µg/mL. The same extract exhibited 63.0% inhibition against serum albumin denaturation as compared to 97% inhibition by the standard diclofenac sodium in an in vitro anti-inflammatory assay, and in vivo anti-inflammatory against carrageenan-induced paw edema (75.14% inhibition) as compared to 86.1% inhibition caused by the standard indomethacin. Furthermore, this extract was not toxic during a 14 day trial of acute toxicity when given at a dose of 3 g/kg, indicating that the lethal dose (LD50) of P. harmala methanol extract was greater than 3 g/kg. P. harmala methanolic fraction 2 obtained using bioassay-guided fractionation showed the presence of quinic acid, peganine, harmol, harmaline, and harmine, confirmed by electrospray ionization mass spectrometry and quantified using external standards on high performance liquid chromatography. Taken all together, the current investigation further confirms the antioxidant, anti-inflammatory, and safety aspects of P. harmala, which justifies its use in folk medicine.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Carragenina/efectos adversos , Edema/tratamiento farmacológico , Peganum/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Edema/inducido químicamente , Indometacina/farmacología , Dosificación Letal Mediana , Ratones , Extractos Vegetales/química , Quercetina/farmacología , Ratas , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subaguda
20.
Vaccines (Basel) ; 9(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208663

RESUMEN

Schistosomiasis is a parasitic infection that causes considerable morbidity and mortality in the world. Infections of parasitic blood flukes, known as schistosomes, cause the disease. No vaccine is available yet and thus there is a need to design an effective vaccine against schistosomiasis. Schistosoma japonicum, Schistosoma mansoni, and Schistosoma haematobium are the main pathogenic species that infect humans. In this research, core proteomics was combined with a subtractive proteomics pipeline to identify suitable antigenic proteins for the construction of a multi-epitope vaccine (MEV) against human-infecting Schistosoma species. The pipeline revealed two antigenic proteins-calcium binding and mycosubtilin synthase subunit C-as promising vaccine targets. T and B cell epitopes from the targeted proteins were predicted using multiple bioinformatics and immunoinformatics databases. Seven cytotoxic T cell lymphocytes (CTL), three helper T cell lymphocytes (HTL), and four linear B cell lymphocytes (LBL) epitopes were fused with a suitable adjuvant and linkers to design a 217 amino-acid-long MEV. The vaccine was coupled with a TLR-4 agonist (RS-09; Sequence: APPHALS) adjuvant to enhance the immune responses. The designed MEV was stable, highly antigenic, and non-allergenic to human use. Molecular docking, molecular dynamics (MD) simulations, and molecular mechanics/generalized Born surface area (MMGBSA) analysis were performed to study the binding affinity and molecular interactions of the MEV with human immune receptors (TLR2 and TLR4) and MHC molecules (MHC I and MHC II). The MEV expression capability was tested in an Escherichia coli (strain-K12) plasmid vector pET-28a(+). Findings of these computer assays proved the MEV as highly promising in establishing protective immunity against the pathogens; nevertheless, additional validation by in vivo and in vitro experiments is required to discuss its real immune-protective efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA